
Financial Time-Series Tools
xts and chartSeries

Jeffrey A. Ryan
jeffrey.ryan @ insightalgo.com

Joshua M. Ulrich
joshua.m.ulrich @ gmail.com

Presented by Jeffrey Ryan at:
Rmetrics: Computational Finance and Financial Engineering Workshop

June 29 - July 3, 2008, Meielisalp, Lake Thune, Switzerland

www.quantmod.com/Rmetrics2008

mailto:joshua.m.ulrich@gmail.com
mailto:joshua.m.ulrich@gmail.com
mailto:jeffrey.ryan@insightalgo.com
mailto:jeffrey.ryan@insightalgo.com
http://www.quantmod.com/Rmetrics2008
http://www.quantmod.com/Rmetrics2008

Thanks

Diethelm Wuertz
The Rmetrics Foundation

Peter Carl
Brian Peterson
Joshua Ulrich

Gabor Grothendieck
Dirk Eddelbuettel

• The Idea Behind xts
• User Benefits
• Developer Benefits
• Summary

Part I - xts

• Why quantmod
• getSymbols
• chartSeries
• Summary

Part II - quantmod

matrix

xts
zoo

ts timeSeries

its
irts

vector

data.frame

matrix

xts
zoo

ts timeSeries

its
irts

vector

data.frame

Jeffrey A. Ryan and Joshua M. Ulrich

Extensible Time-Series

http://xts.r-forge.r-project.org

http://xts.r-forge.r-project.org
http://xts.r-forge.r-project.org

The Idea

(from the xts DESCRIPTION file)

Provide for uniform handling of R's different time-based data classes,
maximizing native format information preservation and allowing for user level
customization and extension, while simplifying cross-class interoperability.

Simplify time-series data!

The Idea
Provide for uniform handling of R's different time-based data classes,
maximizing native format information preservation and allowing for user level
customization and extension, while simplifying cross-class interoperability.

(from the xts DESCRIPTION file)

What is xts?

What is xts?
1. An S3 class extending zoo

What is xts?
1. An S3 class extending zoo

2. Requires indexing based on a recognized time-
based class

Any of POSIXct, Date, chron, timeDate, yearmon, or yearqtr

What is xts?
1. An S3 class extending zoo

2. Requires indexing based on a recognized time-
based class

Any of POSIXct, Date, chron, timeDate, yearmon, or yearqtr

3. Allows arbitrary hidden attributes with
xtsAttributes

What is xts?
1. An S3 class extending zoo

2. Requires indexing based on a recognized time-
based class

Any of POSIXct, Date, chron, timeDate, yearmon, or yearqtr

3. Allows arbitrary hidden attributes with
xtsAttributes

4. Tools for lossless conversion among classes

as.xts, try.xts, reclass, and Reclass

Why use xts?

Why use xts?
1. A true time-based version of the popular and robust zoo class

Why use xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

Why use xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

3. Flexibility to augment with custom hidden attributes - metadata

Why use xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

3. Flexibility to augment with custom hidden attributes - metadata

4. Smart conversion tools - use xts functionality with other classes

Why use xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

3. Flexibility to augment with custom hidden attributes - metadata

4. Smart conversion tools - use xts functionality with other classes

5. Time-based tools like fast aggregation, periodic functions, etc.

Why develop with xts?

Why develop with xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

3. Flexibility to augment with custom hidden attributes - metadata

4. Smart conversion tools - use xts functionality with other classes

5. Time-based tools like fast aggregation, periodic functions, etc.

Why develop with xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

3. Flexibility to augment with custom hidden attributes - metadata

4. Smart conversion tools - use xts functionality with other classes

5. Time-based tools like fast aggregation, periodic functions, etc.

6. Accept any time-based class in all your functions - without methods

Why develop with xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

3. Flexibility to augment with custom hidden attributes - metadata

4. Smart conversion tools - use xts functionality with other classes

5. Time-based tools like fast aggregation, periodic functions, etc.

6. Accept any time-based class in all your functions - without methods

7. Provide a seamless user experience - his choice of class instead of yours

Why develop with xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

3. Flexibility to augment with custom hidden attributes - metadata

4. Smart conversion tools - use xts functionality with other classes

5. Time-based tools like fast aggregation, periodic functions, etc.

6. Accept any time-based class in all your functions - without methods

7. Provide a seamless user experience - his choice of class instead of yours

8. Less data-specific coding and testing means more time to develop

Why develop with xts?
1. A true time-based version of the popular and robust zoo class

2. New behavior that accounts for time - subsetting, etc.

3. Flexibility to augment with custom hidden attributes - metadata

4. Smart conversion tools - use xts functionality with other classes

5. Time-based tools like fast aggregation, periodic functions, etc.

6. Accept any time-based class in all your functions - without methods

7. Provide a seamless user experience - his choice of class instead of yours

8. Less data-specific coding and testing means more time to develop

Let’s start by looking at using xts...

Using xts

• as.xts()

• Time-based tools
first(), last(), [.xts, to.period(), and period.apply()

• reclass()

Create an object

• Convert automatically with as.xts():
ts, data.frame, matrix, zoo, timeSeries, its, irts, and xts.

• Add additional meta-data with ... arg at
construction, or with xtsAttributes

• xts() constructor also available

Create an object

• Convert automatically with as.xts():
ts, data.frame, matrix, zoo, timeSeries, its, irts, and xts.

• Add additional meta-data with ... arg at
construction, or with xtsAttributes

• xts() constructor also available

You now have a time-based object!

Time-based object means ...

Time-based object means ...

... time-aware tools!

first and last

• Provide a time-based equivalent of
head() and tail()

• Allow for natural-language subsetting

find the first or last ‘3 weeks’ or ‘5 months’ of a
dataset, regardless of underlying periodicity. e.g. last
(MSFT, ‘3 weeks’) works as well on minute data as it
does on daily.

• Positive and negative indexing

‘-3 weeks’ returns all data except the first or last 3
weeks.

[.xts
Extends the ISO 8601-style of range
specification to the standard R-style

single-bracket subsetting mechanism using
[from/to] or [from::to]

[.xts
Extends the ISO 8601-style of range
specification to the standard R-style

single-bracket subsetting mechanism using
[from/to] or [from::to]

This works on any periodicity or index class!

fast periodicity conversion

to.period allows for fast changes
to the periodicity of univariate

and OHLC data.

Convert from one periodicity to
another - e.g. daily to monthly,

or hourly to daily with one
function.

indexAt allows control of
resultant index class and style.
Possible option include startof,

firstof, lastof, endof, yearmon, and
yearqtr

fast periodicity conversion

to.period allows for fast changes
to the periodicity of univariate

and OHLC data.

Convert from one periodicity to
another - e.g. daily to monthly,

or hourly to daily with one
function.

indexAt allows control of
resultant index class and style.
Possible option include startof,

firstof, lastof, endof, yearmon, and
yearqtr

fast periodicity conversion

to.period allows for fast changes
to the periodicity of univariate

and OHLC data.

Convert from one periodicity to
another - e.g. daily to monthly,

or hourly to daily with one
function.

Additional Wrappers:
to.minutes
to.hourly
to.daily

to.weekly
to.monthly
to.quarterly

to.yearly

Aggregate by period
period.apply

Apply any function on specified
periods.

apply.monthly(MSFT, function(x) mean(Hi(x)))
returns the monthly average Hi for MSFT

Aggregate by period
period.apply

Apply any function on specified
periods.

apply.monthly(MSFT, function(x) mean(Hi(x)))
returns the monthly average Hi for MSFT

Additional Wrappers: apply.daily, apply.weekly, apply.monthly, apply.quarterly, apply.yearly

reclass and
Reclass

Return data converted to xts
with as.xts back to its original

class.

reclass and
Reclass

Return data converted to xts
with as.xts back to its original

class.

Start with a timeSeries

reclass and
Reclass

Return data converted to xts
with as.xts back to its original

class.

Start with a timeSeries

Convert to xts

reclass and
Reclass

Return data converted to xts
with as.xts back to its original

class.

Start with a timeSeries

Convert to xts

xtsAttributes store meta-data

Convert back without losing
information using reclass

converting back to timeSeries from xts maintains
the original attributes, e.g. @title and

@documentation

as.xts and reclass example

> getSymbols("SBUX",return='timeSeries')
[1] "SBUX"
>

> is.timeSeries(SBUX)
[1] TRUE
>

download a timeSeries of SBUX

as.xts and reclass example

> SBUX['2008-06']
Error in `[.timeSeries`(SBUX, "2008-06") :
subscript out of bounds

attempting to subset xts-style results in an error

as.xts and reclass example

> x <- as.xts(SBUX)['2008-06']
> x
 SBUX.Open SBUX.High SBUX.Low SBUX.Close SBUX.Volume SBUX.Adjusted
2008-06-02 18.17 18.17 17.63 17.93 10877200 17.93
2008-06-03 17.93 18.13 17.40 17.75 13076200 17.75
2008-06-04 17.72 18.34 17.72 18.12 15915400 18.12
2008-06-05 18.15 18.52 18.01 18.52 13662400 18.52
2008-06-06 18.35 18.35 17.64 17.67 12236500 17.67
2008-06-09 17.71 18.20 17.37 17.52 16788400 17.52
2008-06-10 17.33 17.93 17.25 17.84 9761300 17.84
2008-06-11 17.94 17.94 17.55 17.57 11351100 17.57
2008-06-12 17.76 18.06 17.66 17.82 8571900 17.82
2008-06-13 17.95 18.20 17.83 18.17 10910400 18.17
2008-06-16 18.01 18.56 17.89 18.35 8295000 18.35
2008-06-17 18.37 18.47 18.07 18.12 6369500 18.12
2008-06-18 18.00 18.09 17.66 17.77 8452600 17.77
2008-06-19 17.73 18.06 17.38 17.99 9215800 17.99
2008-06-20 17.77 17.82 17.18 17.23 13066200 17.23
2008-06-23 17.26 17.49 16.27 16.30 19602100 16.30
2008-06-24 16.36 16.92 16.25 16.57 12763800 16.57

the solution?

first convert with as.xts

as.xts and reclass example

> is.timeSeries(x)
[1] FALSE
> x <- reclass(x)
> is.timeSeries(x)
[1] TRUE
> x
 SBUX.Open SBUX.High SBUX.Low SBUX.Close SBUX.Volume SBUX.Adjusted
2008-06-02 18.17 18.17 17.63 17.93 10877200 17.93
2008-06-03 17.93 18.13 17.40 17.75 13076200 17.75
2008-06-04 17.72 18.34 17.72 18.12 15915400 18.12
2008-06-05 18.15 18.52 18.01 18.52 13662400 18.52
2008-06-06 18.35 18.35 17.64 17.67 12236500 17.67
2008-06-09 17.71 18.20 17.37 17.52 16788400 17.52
2008-06-10 17.33 17.93 17.25 17.84 9761300 17.84
2008-06-11 17.94 17.94 17.55 17.57 11351100 17.57
2008-06-12 17.76 18.06 17.66 17.82 8571900 17.82
2008-06-13 17.95 18.20 17.83 18.17 10910400 18.17
2008-06-16 18.01 18.56 17.89 18.35 8295000 18.35
2008-06-17 18.37 18.47 18.07 18.12 6369500 18.12
2008-06-18 18.00 18.09 17.66 17.77 8452600 17.77
2008-06-19 17.73 18.06 17.38 17.99 9215800 17.99
2008-06-20 17.77 17.82 17.18 17.23 13066200 17.23
2008-06-23 17.26 17.49 16.27 16.30 19602100 16.30
2008-06-24 16.36 16.92 16.25 16.57 12763800 16.57

then reclass back to timeSeries

as.xts and reclass example

> is.timeSeries(x)
[1] FALSE
> x <- reclass(x)
> is.timeSeries(x)
[1] TRUE
> x
 SBUX.Open SBUX.High SBUX.Low SBUX.Close SBUX.Volume SBUX.Adjusted
2008-06-02 18.17 18.17 17.63 17.93 10877200 17.93
2008-06-03 17.93 18.13 17.40 17.75 13076200 17.75
2008-06-04 17.72 18.34 17.72 18.12 15915400 18.12
2008-06-05 18.15 18.52 18.01 18.52 13662400 18.52
2008-06-06 18.35 18.35 17.64 17.67 12236500 17.67
2008-06-09 17.71 18.20 17.37 17.52 16788400 17.52
2008-06-10 17.33 17.93 17.25 17.84 9761300 17.84
2008-06-11 17.94 17.94 17.55 17.57 11351100 17.57
2008-06-12 17.76 18.06 17.66 17.82 8571900 17.82
2008-06-13 17.95 18.20 17.83 18.17 10910400 18.17
2008-06-16 18.01 18.56 17.89 18.35 8295000 18.35
2008-06-17 18.37 18.47 18.07 18.12 6369500 18.12
2008-06-18 18.00 18.09 17.66 17.77 8452600 17.77
2008-06-19 17.73 18.06 17.38 17.99 9215800 17.99
2008-06-20 17.77 17.82 17.18 17.23 13066200 17.23
2008-06-23 17.26 17.49 16.27 16.30 19602100 16.30
2008-06-24 16.36 16.92 16.25 16.57 12763800 16.57

then reclass back to timeSeries

xts-style
subsetting on a

timeSeries
object!

What is Reclass for?

What is Reclass for?

Reclass attempts to take any function call and
force it to return an object that matches the

class of the object you passed in.

What is Reclass for?
EMA from TTR returns a vector

What is Reclass for?
EMA from TTR returns a vector

Wrapped in Reclass, and the result is the original xts class

Developing with xts

Using xts internally to manage
time-based data in your own

functions and packages.

Developing with xts
Four (4) options for handling R’s time-based classes in functions:

1) Write methods for all possible
inputs

Developing with xts
Four (4) options for handling R’s time-based classes in functions:

1) Write methods for all possible
inputs (9 classes!)

Data Classes:
matrix,

data.frame, ts,
zoo, its, irts,

timeSeries, xts,
vectors

Time Classes:
POSIXct,

POSIXlt, chron,
Date, timeDate,

yearmon,
yearqtr

Developing with xts
Four (4) options for handling R’s time-based classes in functions:

1) Write methods for all possible
inputs

2) Choose one class to accept

Data Classes:
matrix,

data.frame, ts,
zoo, its, irts,

timeSeries, xts,
vectors

Time Classes:
POSIXct,

POSIXlt, chron,
Date, timeDate,

yearmon,
yearqtr

Developing with xts
Four (4) options for handling R’s time-based classes in functions:

1) Write methods for all possible
inputs

2) Choose one class to accept
3) Convert internally to ... (matrix?)

Data Classes:
matrix,

data.frame, ts,
zoo, its, irts,

timeSeries, xts,
vectors

Time Classes:
POSIXct,

POSIXlt, chron,
Date, timeDate,

yearmon,
yearqtr

Developing with xts
Four (4) options for handling R’s time-based classes in functions:

1) Write methods for all possible
inputs

2) Choose one class to accept
3) Convert internally to ... (matrix?)
4) Use xts functions to manage the

process

Data Classes:
matrix,

data.frame, ts,
zoo, its, irts,

timeSeries, xts,
vectors

Time Classes:
POSIXct,

POSIXlt, chron,
Date, timeDate,

yearmon,
yearqtr

try.xts and reclass

• Accept all common time-series in R
• Manage one type of object internally
• Return original class to the user

Two simple functions let you...

try.xts and reclass
Two simple functions let you...

which translates to...

• Less code to write and maintain
• Increased reliability and flexibility
• Freedom to focus on core development tasks

• Accept all common time-series in R
• Manage one type of object internally
• Return original class to the user

try.xts

Use is.xts to test and branch if desired
Convert, if possible, an incoming object to xts

try.xts
Convert, if possible, an incoming object to xts

Use is.xts to test and branch if desired

reclass
Convert, if possible, back to the original class

... an example?

period.apply using try.xts & reclass

period.apply <-
function (x, INDEX, FUN, ...)
{
 x <- try.xts(x, error = FALSE)
 FUN <- match.fun(FUN)
 xx <- sapply(1:(length(INDEX) - 1), function(y) {
 FUN(x[(INDEX[y] + 1):INDEX[y + 1]], ...)
 })
 reclass(xx, x[INDEX])
}

period.apply <-
function (x, INDEX, FUN, ...)
{
 x <- try.xts(x, error = FALSE)
 FUN <- match.fun(FUN)
 xx <- sapply(1:(length(INDEX) - 1), function(y) {
 FUN(x[(INDEX[y] + 1):INDEX[y + 1]], ...)
 })
 reclass(xx, x[INDEX])
}

period.apply using try.xts & reclass

Two simple additions allows the period.apply function
to accept, and ultimately return, any class of time-series
object. By setting error=FALSE, it is even possible
to accept non-xts coercible args. Truly universal data
acceptance.

Using try.xts

try.xts(x, ..., error = FALSE)

incoming data

using the incoming data, attempt to convert

Using try.xts

try.xts(x, ..., error = FALSE)

passed to xts()

add any additional args to xts constructor

Using try.xts

try.xts(x, ..., error = FALSE)

failure OK?

FALSE means success isn’t required

Using reclass

the result before converting

first argument - result of internal calculations

reclass(xx, match.to=x)

Using reclass

reclass(xx, match.to=x)

second argument - the original object (more or less)

the original result from try.xts

Using reclass

reclass(xx, match.to=x)

second argument - the original object (more or less)

the original result from try.xts

the match.to argument is the template for re-
indexing as an xts object.

period.apply <-
function (x, INDEX, FUN, ...)
{
 x <- try.xts(x, error = FALSE)
 FUN <- match.fun(FUN)
 xx <- sapply(1:(length(INDEX) - 1), function(y) {
 FUN(x[(INDEX[y] + 1):INDEX[y + 1]], ...)
 })
 reclass(xx, x[INDEX])
}

Put it all together

Using try.xts and reclass

period.apply <-
function (x, INDEX, FUN, ...)
{
 x <- try.xts(x, error = FALSE)
 FUN <- match.fun(FUN)
 xx <- sapply(1:(length(INDEX) - 1), function(y) {
 FUN(x[(INDEX[y] + 1):INDEX[y + 1]], ...)
 })
 reclass(xx, x[INDEX])
}

Put it all together

try.xts

Attempt to convert to xts, if not possible - continue on.
In this case, it isn’t necessary that we have an xts object,
it is only to provide the user with a seemless experience

period.apply <-
function (x, INDEX, FUN, ...)
{
 x <- try.xts(x, error = FALSE)
 FUN <- match.fun(FUN)
 xx <- sapply(1:(length(INDEX) - 1), function(y) {
 FUN(x[(INDEX[y] + 1):INDEX[y + 1]], ...)
 })
 reclass(xx, x[INDEX])
}

Put it all together

main calculations

Proceed with function work. It is important to keep the
original x variable untouched, otherwise the data may be
lost or corrupted by non-xts aware functions

period.apply <-
function (x, INDEX, FUN, ...)
{
 x <- try.xts(x, error = FALSE)
 FUN <- match.fun(FUN)
 xx <- sapply(1:(length(INDEX) - 1), function(y) {
 FUN(x[(INDEX[y] + 1):INDEX[y + 1]], ...)
 })
 reclass(xx, x[INDEX])
}

Put it all together

reclass

xx is the result of the function call, before attempting the
reclass. In this case the data is shorter than the original,
and must be modified for reclass to work correctly.

xts Summary

xts Summary

• zoo modified for time

xts Summary

• zoo modified for time

• new time-aware tools

xts Summary

• zoo modified for time

• new time-aware tools

• increased developer productivity

xts Summary

• zoo modified for time

• new time-aware tools

• increased developer productivity

Now on to quantmod and charts!

quantmod
Jeffrey A. Ryan

www.quantmod.com

quantmod.r-forge.r-project.org

http://www.quantmod.com
http://www.quantmod.com
http://www.quantmod.com
http://www.quantmod.com

Purpose
Provide a single, unified R-based workflow.

Purpose
Provide a single, unified R-based workflow.

Data (getSymbols)

Purpose
Provide a single, unified R-based workflow.

Data (getSymbols)

Visuals (chartSeries)

Purpose
Provide a single, unified R-based workflow.

Data (getSymbols)

Visuals (chartSeries)

Model (buildModel)

Purpose
Provide a single, unified R-based workflow.

Data (getSymbols)

Visuals (chartSeries)

Model (buildModel)

Test (tradeModel)

Purpose
Provide a single, unified R-based workflow.

Data (getSymbols)

Visuals (chartSeries)

Model (buildModel)

Test (tradeModel)

Today’s
presentation

Single Data Interface
getSymbols

• One wrapper function
for all data sources

• Extensible by simple
naming convention

• auto.assign into
specified environment

• Settable return class

getSymbols

oanda
FRED

(Federal Reserve Bank of St.
Louis)

RData/rda

Yahoo! Finance Google Finance MySQL

SQLite csv IBrokers

getSymbols

getSymbols.yahoo

getSymbols(“SBUX”, src = ‘yahoo’)

getSymbols

getSymbols(“SBUX”, src = ‘yahoo’)

getSymbols.yahoo

Simple to extend to other data sources

Example 1
Download data from Yahoo!

Specify src = “yahoo” to getSymbols call

Example 1
Download data from Yahoo!

showSymbols returns information on what has been loaded

Specify src = “yahoo” to getSymbols call

Example 1I
Download from FRED and Google in one call

Use setSymbolLookup to change default source for certain symbols

Example 1I
Download from FRED and Google in one call

Use setSymbolLookup to change default source for certain symbols

JPY/USD YHOO

from Federal Reserve Bank
of St. Louis FRED

from Google Finance

loads...

Additional Data Tools

Additional Data Tools

• getQuote
get highly configurable quotes from Yahoo! and others

Additional Data Tools

• getQuote
get highly configurable quotes from Yahoo! and others

• getFinancials
retrieve fundamental data from Google/Reuters

Additional Data Tools

• getQuote
get highly configurable quotes from Yahoo! and others

• getFinancials
retrieve fundamental data from Google/Reuters

• getFX & getMetals
Get currency and metal prices from Oanda.com

Additional Data Tools

• getQuote
get highly configurable quotes from Yahoo! and others

• getFinancials
retrieve fundamental data from Google/Reuters

• getFX & getMetals
Get currency and metal prices from Oanda.com

• getDividends
Get dividend data from Yahoo!

Additional Data Tools

• getQuote
get highly configurable quotes from Yahoo! and others

• getFinancials
retrieve fundamental data from Google/Reuters

• getFX & getMetals
Get currency and metal prices from Oanda.com

Now, on to the charts...

Visualization
chartSeries

Charting in R

Charting in R
Most time-series plotting in R is derived

from standard line charts

Charting in R
Most time-series plotting in R is derived

from standard line charts

from stats

Charting in R
Most time-series plotting in R is derived

from standard line charts

from zoo

Charting in R
Most time-series plotting in R is derived

from standard line charts

from tseries and fTrading

Charting in R
Most time-series plotting in R is derived

from standard line charts

from xts

Charting in R
Most time-series plotting in R is derived

from standard line charts

from xts

All useful, but not really financial
charts

Charting in R
Most time-series plotting in R is derived

from standard line charts

from xts

An example posted to
addictedtor.free.fr by

Dirk Eddelbuettel shows what is
possible with some 200+

lines of code...

Charting in R

Charting in R

chartSeries makes it easier...

chartSeries(IBM,TA='addBBands();addBBands(draw="p");addVo()',subset='2008')

chartSeries(IBM,TA='addBBands();addBBands(draw="p");addVo()',subset='2008')

1 line of code

chartSeries
• Overview

chartSeries
• Overview

• Customizing the look
chartTheme and reChart

chartSeries
• Overview

• Customizing the look
chartTheme and reChart

• zoomChart and zooom

chartSeries
• Overview

• Customizing the look
chartTheme and reChart

• zoomChart and zooom

• Adding TA indicators
Built-in
ad-hoc additions with addTA
custom indicators with newTA

Overview

Overview

• Works interactively or from scripts

Overview

• Works interactively or from scripts

• Built-in facility for bars, candles, and lines

Overview

• Works interactively or from scripts

• Built-in facility for bars, candles, and lines

• Manages layout dynamically

Overview

• Works interactively or from scripts

• Built-in facility for bars, candles, and lines

• Manages layout dynamically

• Add and remove elements at will

Overview

• Works interactively or from scripts

• Built-in facility for bars, candles, and lines

• Manages layout dynamically

• Add and remove elements at will

• Highly configurable

Overview

• Works interactively or from scripts

• Built-in facility for bars, candles, and lines

• Manages layout dynamically

• Add and remove elements at will

• Highly configurable

• Fully extensible

chartSeries can draw 3 styles of charts

lineChart(IBM, subset='last 4 months',TA=NULL)

lines

barChart(IBM, subset='last 4 months',TA=NULL)

chartSeries can draw 3 styles of charts

ohlc & hlc bars

candleChart(IBM, subset='last 4 months',TA=NULL)

chartSeries can draw 3 styles of charts

candlesticks

chartTheme

Charts use “themes” to coordinate colors
using the theme argument to chartSeries

theme = chartTheme(“white”)

theme = chartTheme(“black”)

theme = chartTheme(“white.mono”)

theme = chartTheme(“black.mono”)

theme = chartTheme(“beige”)

Easy to modify themes

> # create a new theme
> blackandred <- chartTheme(up.col='white',dn.col='red',
+ area='#080808',bg.col='#000000')
>
> candleChart(IBM, theme=blackandred, subset='2008')

> # create a new theme
> blackandred <- chartTheme(up.col='white',dn.col='red',
+ area='#080808',bg.col='#000000')
>
> candleChart(IBM, theme=blackandred, subset='2008')

Modify drawn charts
with reChart

Modify drawn charts
with reChart

> reChart(theme=‘white’, type=’bars’)

Modify drawn charts
with reChart

> reChart(theme=‘white’, type=’bars’)

Works for most
chartSeries args!

zoomChart
(and zooom)

zoomChart
(and zooom)

Functions to zoom-in and zoom-out
of a chart

all of 2007

zoomChart
(and zooom)

zoomChart
(and zooom)

> zoomChart(‘2008’)

now 2008!
zoomChart

(and zooom)

now 2008!
zoomChart

(and zooom)

Works just like subsetting in xts

Chart Additions
Adding data to charts is easy and fast

Chart Additions
Adding data to charts is easy and fast

Using the TA argument to chartSeries

Chart Additions
Adding data to charts is easy and fast

Using the TA argument to chartSeries

Interactively with addTA and friends

Adding with TA=
TA stands for (T)echnical (A)analysis

Built-in TA functionality from quantmod and TTR

addADX addATR addBBands

addCCI addCMF addCMO

addDEMA addDPO addEMA

addEnvelope addEVWMA addExpiry

addMACD addMomentum addROC

addRSI addSAR addSMI

addTRIX addVo addWMA

addWPR addZLEMA more to come!!!!

Adding with TA=
chartSeries(IBM, TA=NULL)

Adding with TA=
chartSeries(IBM, TA=NULL)

By default TA=“addVo()”,
setting to NULL causes just the price

series to be displayed

Adding with TA=
chartSeries(IBM, TA = “addMACD();addBBands()”)

Adding with TA=
chartSeries(IBM, TA = “addMACD();addBBands()”)

Adding with TA=
chartSeries(IBM, TA = “addMACD();addBBands()”)

> zoomChart(‘2008’)

Adding with TA=
chartSeries(IBM, TA = “addMACD();addBBands()”)

zooming works too!

Adding interactively
chartSeries(IBM, TA=NULL)

Adding interactively
chartSeries(IBM, TA=NULL)

> addBBands()

Adding interactively
Now with Bollinger Bands under the series

Adding interactively

> addDPO()

Adding interactively
With a De-trended Price Oscillator

Custom TA

Custom TA

addTA
add data directly to a chart

Custom TA

addTA
add data directly to a chart

newTA
create new TA functions easily

addTA

Provide a mechanism to create TA additions
on-demand, using only raw data

addTA
The newest TTR package includes a volatility function

to calculate different measures of volatility

addTA

e.g. volatility(OHLC(IBM), calc = ‘garman.klass’)

The newest TTR package includes a volatility function
to calculate different measures of volatility

addTA

e.g. volatility(OHLC(IBM), calc = ‘garman.klass’)

returns the Garman-Klass volatility

The newest TTR package includes a volatility function
to calculate different measures of volatility

addTA
To add this to the IBM chart:

addTA
To add this to the IBM chart:

> addTA(volatility(OHLC(IBM),calc=‘garman.klass’),col=3)

addTA
The result is displayed just like any built-in TA

addTA

What if you want something simple &
more flexible like addVolatility()?

The result is displayed just like any built-in TA

newTA

Provide a mechanism to create functional TA additions
based on user functions

newTA

> addVolatility <- newTA(volatility, preFUN=OHLC, col=4,lwd=2)
>
> class(addVolatility)
[1] “function”
>

newTA automatically creates the code needed!

newTA
simply call the new function

> addVolatility()

newTA
done!

quantmod Summary

quantmod Summary

• single interface to data with getSymbols

quantmod Summary

• single interface to data with getSymbols

• fast and flexible visualization in chartSeries

quantmod Summary

• single interface to data with getSymbols

• fast and flexible visualization in chartSeries

• big plans for the future!

Financial Time-Series Tools
xts and chartSeries

Jeffrey A. Ryan
jeffrey.ryan @ insightalgo.com

Joshua M. Ulrich
joshua.m.ulrich @ gmail.com

Presented by Jeffrey Ryan at:
Rmetrics: Computational Finance and Financial Engineering Workshop

June 29 - July 3, 2008, Meielisalp, Lake Thune, Switzerland

www.quantmod.com/Rmetrics2008

mailto:joshua.m.ulrich@gmail.com
mailto:joshua.m.ulrich@gmail.com
mailto:jeffrey.ryan@insightalgo.com
mailto:jeffrey.ryan@insightalgo.com
http://www.quantmod.com/Rmetrics2008
http://www.quantmod.com/Rmetrics2008

