
quantmod
June 9, 2008

Type Package

Title Quantitative Financial Modelling Framework

Version 0.3-6

Revision 433

Date 2008-06-09

Author Jeffrey A. Ryan

Depends xts(>= 0.0-15),zoo,Defaults

Suggests DBI,RMySQL,RSQLite,TTR(>= 0.14-0),fSeries,its

Maintainer Jeffrey A. Ryan <jeff.a.ryan@gmail.com>

Description Specify, build, trade, and analyse quantitative financial trading strategies

LazyLoad yes

License GPL-3

URL http://www.quantmod.com http://r-forge.r-project.org/projects/quantmod

R topics documented:
Delt . 2
Lag . 3
Next . 5
OHLC.Transformations . 6
TA . 8
addADX . 10
addBBands . 11
addExpiry . 12
addMA . 12
addMACD . 14
addROC . 15
addRSI . 16
addSAR . 17
addSMI . 18
addVo . 19

1

2 Delt

addWPR . 19
buildData . 20
buildModel . 21
chartSeries . 22
chartTheme . 25
chob-class . 27
chobTA-class . 28
fittedModel . 29
getDividends . 31
getFX . 32
getFinancials . 33
getMetals . 35
getModelData . 36
getQuote . 37
getSymbols.FRED . 38
getSymbols.MySQL . 39
getSymbols . 41
getSymbols.SQLite . 44
getSymbols.csv . 45
getSymbols.google . 47
getSymbols.oanda . 49
getSymbols.rda . 50
getSymbols.yahoo . 51
has.OHLC . 53
internal-quantmod . 54
is.quantmod . 55
modelData . 55
modelSignal . 56
newTA . 57
options.expiry . 59
periodReturn . 61
quantmod-class . 62
quantmod-package . 63
quantmod.OHLC . 64
setSymbolLookup . 65
setTA . 67
specifyModel . 68
tradeModel . 69
zoomChart . 71

Index 73

Delt Calculate Percent Change

Description

Calculate the k-period percent difference within one series, or between two series. Primarily used to
calculate the percent change from one period to another of a given series, or to calculate the percent
difference between two series over the full series.

Delt 3

Usage

Delt(x1, x2 = NULL, k = 0, type = c("arithmetic", "log"))

Arguments

x1 m x 1 vector

x2 m x 1 vector

k change over k-periods. default k=1 when x2 is NULL.

type type of difference. log or arithmetic (defauly).

Details

When called with only x1, the one period percent change of the series is returned by default.
Internally this happens by copying x1 to x2. A two period difference would be specified with k=2.

If called with both x1 and x2, the difference between the two is returned. That is, k=0. A one
period difference would be specified by k=1. k may also be a vector to calculate more than one
period at a time. The results will then be an m x length(k)

Log differences are used by default: Lag = log(x2(t)/x1(t-k))

Arithmetic differences are calculated: Lag = (x2(t) - x1(t-k))/x1(t-k)

Value

An matrix of length(x1) rows and length(k) columns.

Author(s)

Jeffrey A. Ryan

See Also

OpOp OpCl

Examples

Stock.Open <- c(102.25,102.87,102.25,100.87,103.44,103.87,103.00)
Stock.Close <- c(102.12,102.62,100.12,103.00,103.87,103.12,105.12)

Delt(Stock.Open) #one period pct. price change
Delt(Stock.Open,k=1) #same
Delt(Stock.Open,type='arithmetic') #using arithmetic differences

Delt(Stock.Open,Stock.Close) #Open to Close pct. change
Delt(Stock.Open,Stock.Close,k=0:2) #...for 0,1, and 2 periods

4 Lag

Lag Lag a Time Series

Description

Create a lagged series from data, with NA used to fill.

Usage

Lag(x, k = 1)

S3 method for class 'quantmod.OHLC':
Lag(x, k = 1)

S3 method for class 'zoo':
Lag(x, k = 1)

S3 method for class 'data.frame':
Lag(x, k = 1)

S3 method for class 'numeric':
Lag(x, k = 1)

Arguments

x vector or series to be lagged
k periods to lag.

Details

Shift series k-periods down, prepending NAs to front of series.

Specifically designed to handle quantmod.OHLC and zoo series within the quantmod work-
flow.

If no S3 method is found, a call to lag in base is made.

Value

The original x prepended with k NAs and missing the trailing k values.

The returned series maintains the number of obs. of the original.

Note

This function differs from lag by returning the original series modified, as opposed to simply
changing the time series properties. It differs from the like named Lag in the Hmisc as it deals
primarily with time-series like objects.

It is important to realize that if there is no applicable method for Lag, the value returned will be
from lag in base. That is, coerced to ’ts’ if necessary, and subsequently shifted.

Author(s)

Jeffrey A. Ryan

Next 5

See Also

lag

Examples

Stock.Close <- c(102.12,102.62,100.12,103.00,103.87,103.12,105.12)
Close.Dates <- as.Date(c(10660,10661,10662,10665,10666,10667,10668),origin="1970-01-01")
Stock.Close <- zoo(Stock.Close,Close.Dates)

Lag(Stock.Close) #lag by 1 period
Lag(Stock.Close,k=1) #same
Lag(Stock.Close,k=1:3) #lag 1,2 and 3 periods

Next Advance a Time Series

Description

Create a new series with all values advanced forward one period. The value of period 1, becomes
the value at period 2, value at 2 becomes the original value at 3, etc. The opposite of Lag. NA is
used to fill.

Usage

Next(x, k = 1)

S3 method for class 'quantmod.OHLC':
Next(x,k=1)

S3 method for class 'zoo':
Next(x,k=1)

S3 method for class 'data.frame':
Next(x,k=1)

S3 method for class 'numeric':
Next(x,k=1)

Arguments

x vector or series to be advanced

k periods to advance

Details

Shift series k-periods up, appending NAs to end of series.

Specifically designed to handle quantmod.OHLC and zoo series within the quantmod workflow.

If no S3 method is found, a call to lag in base is made, with the indexing reversed to shift the time
series forward.

6 OHLC.Transformations

Value

The original x appended with k NAs and missing the leading k values.

The returned series maintains the number of obs. of the original.

Unlike Lag, only one value for k is allowed.

Note

This function’s purpose is to get the “next” value of the data you hope to forecast, e.g. a stock’s
closing value at t+1. Specifically to be used within the quantmod framework of specifyModel,
as a functional wrapper to the LHS of the model equation.

It is not magic - and thus will not get tomorrow’s values. . .

Author(s)

Jeffrey A. Ryan

See Also

specifyModel, Lag

Examples

Stock.Close <- c(102.12,102.62,100.12,103.00,103.87,103.12,105.12)
Close.Dates <- as.Date(c(10660,10661,10662,10665,10666,10667,10668),origin="1970-01-01")
Stock.Close <- zoo(Stock.Close,Close.Dates)

Next(Stock.Close) #one period ahead
Next(Stock.Close,k=1) #same

merge(Next(Stock.Close),Stock.Close)

Not run:
a simple way to build a model of next days
IBM close, given todays. Technically both
methods are equal, though the former is seen
as more intuitive...ymmv
specifyModel(Next(Cl(IBM)) ~ Cl(IBM))
specifyModel(Cl(IBM) ~ Lag(Cl(IBM)))
End(Not run)

OHLC.Transformations
Extract and Transform OHLC Time-Series Columns

Description

Extract (transformed) data from a suitable OHLC object. Column names must contain the complete
description - either “Open”, “High”, “Low”, “Close”, “Volume”, or “Adjusted” - though may also
contain additional characters. This is the default for objects returned from most getSymbols
calls.

OHLC.Transformations 7

In the case of functions consisting of combined Op, Hi, Lo, Cl (e.g. ClCl(x)) the one period
transformation will be applied.

For example, to return the Open to Close of a object it is possible to call OpCl(x). If multiple
periods are desired a call to the function Delt is necessary.

seriesLo and seriesHi will return the low and high, respectively, of a given series.

HLC extracts the High, Low, and Close columns. OHLC extracts the Open, High, Low, and Close
columns.

These functions are merely to speed the model specification process. All columns may also be
extracted through standard R methods.

Assignment will not work at present.

Usage

Op(x)
Hi(x)
Lo(x)
Cl(x)
Vo(x)
Ad(x)

seriesHi(x)
seriesLo(x)

OpCl(x)
ClCl(x)
HiCl(x)
LoCl(x)
LoHi(x)
OpHi(x)
OpLo(x)
OpOp(x)

HLC(x)
OHLC(x)

Arguments

x A data object with columns containing data to be extracted.

Details

Internally, the code uses grep to locate the appropriate columns. Therefore it is necessary to use
inputs with column names matching the requirements in the description section, though the exact
naming convention is not as important.

Value

Returns an object of the same class as the original series, with the appropriately column names
if applicable and/or possible. The only exceptions are for quantmod.OHLC objects which will
be returned as zoo objects, and calls to seriesLo and seriesHi which may return a numeric
value instead of the original object type.

8 TA

Author(s)

Jeffrey A. Ryan

See Also

specifyModel

Examples

Not run:
getSymbols('IBM',src='yahoo')
Ad(IBM)
Cl(IBM)
ClCl(IBM)

seriesHi(IBM)
seriesHi(Lo(IBM))

removeSymbols('IBM')
End(Not run)

TA Add Technical Indicator to Chart

Description

Functions to add technical indicators to a chart.

Details

The general mechanism to add technical analysis studies or overlays to a financial chart created
with chartSeries.

Functionality marked with a ‘*’ is via the TTR package.

General TA charting tool functions:

addTA add data as custom indicator

dropTA remove technical indicator

moveTA move a technical indicator

swapTA swap two technical indicators

Current technical indicators include:

addADX add Welles Wilder’s Directional Movement Indicator*

addATR add Average True Range *

addBBands: add Bollinger Bands *

addCCI add Commodity Channel Index *

addCMF add Chaiken Money Flow *

addCMO add Chande Momentum Oscillator *

addDEMA add Double Exponential Moving Average *

TA 9

addDPO add Detrended Price Oscillator *

addEMA add Exponential Moving Average *

addEnvelope add Moving Average Envelope

addEVWMA add Exponential Volume Weighted Moving Average *

addExpiry add options or futures expiration lines

addLines add line(s)

addMACD: add Moving Average Convergence Divergence *

addMomentum add Momentum *

addPoints add point(s)

addROC: add Rate of Change *

addRSI add Relative Strength Indicator *

addSAR add Parabolic SAR *

addSMA add Simple Moving Average *

addSMI add Stochastic Momentum Index *

addTRIX add Triple Smoothed Exponential Oscillator *

addVo: add Volume if available

addWMA add Weighted Moving Average *

addWPR add Williams Percent R *

addZLEMA add ZLEMA *

See the individual functions for specific implementation and argument details. Details of the under-
lying TTR implementations can be found in TTR.

The primary changes between the add*** version of an indicator and the TTR base function is the
absense of the data argument in the former.

Notable additions include on, with.col and overlay (deprecated).

Value

Called for its side effects, an object to class chobTA will be returned invisibly. If called from the
R command line the method will draw the appropriate indicator on the current chart.

Note

Calling any of the above methods from within a function or script will generally require them to be
wrapped in a plot call as they rely on the context of the call to initiate the actual charting addition.

Author(s)

Jeffrey A. Ryan

References

Josh Ulrich - TTR package

10 addADX

addADX Add Directional Movement Index

Description

Add Directional Movement Index

Usage

addADX(n = 14, maType="EMA", wilder=TRUE)

Arguments

n periods to use for DX calculation

maType moving average type

wilder should Welles Wilder EMA be used?

Details

See ’ADX’ in TTR for specific details and references.

Value

An ADX indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see ADX in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addADX()
End(Not run)

addBBands 11

addBBands Add Bollinger Bands to Chart

Description

Add Bollinger Bands to current chart.

Usage

addBBands(n = 20, sd = 2, ma = "SMA", draw = 'bands', on = -1)

Arguments

n number of moving average periods

ma type of moving average to be used

sd number of standard deviations

draw indicator to draw: bands, percent, or width

on which figure area of chart to apply to

Details

The primary addition to this function call over the TTR version is in the draw argument. ‘bands’
will draw standard Bollinger Bands, ‘percent’ will draw Bollinger %b and ‘width’ will draw Bolinger
Bands Width. The last two will be drawn in new figure regions.

See bollingerBands in TTR for specific details as to implementation and references.

Value

Bollinger Bands will be drawn, or scheduled to be drawn, on the current chart. If draw is either
percent or width a new figure will be added to the current TA figures charted.

A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

See bollingerBands in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addBBands()
End(Not run)

12 addMA

addExpiry Add Contract Expiration Bars to Chart

Description

Apply options or futures expiration vertical bars to current chart.

Usage

addExpiry(type = "options", lty = "dotted")

Arguments

type options or futures expiration

lty type of lines to draw

Details

See options.expiry and futures.expiry in quantmod for details and limitations.

Value

Expiration lines will be drawn at appropriate dates. A chibTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

See Also

addTA

Examples

Not run:
addExpiry()
End(Not run)

addMA Add Moving Average to Chart

Description

Add one or more moving averages to a chart.

addMA 13

Usage

addSMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "brown")

addEMA(n = 10, wilder = FALSE, ratio=NULL, on = 1,
with.col = Cl, overlay = TRUE, col = "blue")

addWMA(n = 10, wts=1:n, on = 1, with.col = Cl, overlay = TRUE, col = "green")

addDEMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "pink")

addEVWMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "yellow")

addZLEMA(n = 10, ratio=NULL, on = 1, with.col = Cl, overlay = TRUE, col = "red")

Arguments

n periods to average over

wilder logical; use wilder?

wts a vector of weights

ratio a smoothing/decay ratio

on apply to which figure (see below)

with.col using which column of data (see below)

overlay draw as overlay

col color of MA

Details

see the appropriate base MA functions in TTR for more details and references.

Value

A moving average indicator will be draw on the current chart. A chobTA object will be returned
silently.

Author(s)

Jeffrey A. Ryan

References

see MovingAverages in pkgTTR written by Josh Ulrich

See Also

addTA

14 addMACD

Examples

Not run:
addSMA()
addEMA()
addWMA()
addDEMA()
addEVWMA()
addZLEMA()
End(Not run)

addMACD Add Moving Average Convergence Divergence to Chart

Description

Add Moving Average Convergence Divergence indicator to chart.

Usage

addMACD(fast = 12, slow = 26, signal = 9, type = "EMA", histogram = TRUE, col)

Arguments

fast fast period

slow slow period

signal signal period

type type of MA to use. Single values will be replicated

histogram include histogram

col colors to use for lines (optional)

Details

See and ’MACD’ in TTR for specific details and implementation references.

Value

A MACD indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see MACD in TTR written by Josh Ulrich

See Also

addTA

addROC 15

Examples

Not run:
addMACD()
End(Not run)

addROC Add Rate Of Change to Chart

Description

Add Rate Of Change indicator to chart.

Usage

addROC(n = 1, type = c("discrete", "continuous"), col = "red")

Arguments

n periods

type compounding type

col line color (optional)

Details

See ’ROC’ in TTR for specific details and references.

Value

A ROC indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see ROC in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addROC()
End(Not run)

16 addRSI

addRSI Add Relative Strength Index to Chart

Description

Add a Relative Strength Index indicator to chart.

Usage

addRSI(n = 14, type = "EMA", wilder = TRUE)

Arguments

n periods

type type of MA to use

wilder use wilder (see EMA)

Details

see ’RSI’ in TTR for specific details and references.

Value

An RSI indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see RSI in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addRSI()
End(Not run)

addSAR 17

addSAR Add Parabolic Stop and Reversal to Chart

Description

Add Parabolic Stop and Reversal indicator overlay to chart.

Usage

addSAR(accel = c(0.02, 0.2), col = "blue")

Arguments

accel Accelleration factors - see SAR

col color of points (optional)

Details

see ’SAR’ in TTR for specific details and references.

Value

A SAR overlay will be drawn on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see SAR in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addSAR()
End(Not run)

18 addSMI

addSMI Add Stochastic Momentum Indicator to Chart

Description

Add Stochastic Momentum Indicator to chart.

Usage

addSMI(n=13,slow=25,fast=2,signal=9,ma.type="EMA")

Arguments

n periods

slow slow

fast fast

signal signal

ma.type MA tyep to use, recycled as necessary

Details

see ’SMI in TTR for specifics and references.

Value

An SMI indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see SMI in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addSMI()
End(Not run)

addVo 19

addVo Add Volume to Chart

Description

Add Volume of a series, if available, to the current chart. This is the default TA argument for all
charting functions.

Usage

addVo()

Details

Add volume bars to current chart if data object contains appropriate volume column.

Value

Volume will be draw in a new window on the current chart. A chobTA object will be returned
silently.

Author(s)

Jeffrey A. Ryan

See Also

addTA

Examples

Not run:
addVo()
End(Not run)

addWPR Add William’s Percent R to Chart

Description

Add William’s percent R indiator to the current chart.

Usage

addWPR(n = 14)

Arguments

n periods

20 buildData

Details

see ’WPR’ in TTR for details and references.

Value

A William’s percent R indicator will be draw in a new window on the current chart. A chobTA
object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see ’WPR’ in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addWPR()
End(Not run)

buildData Create Data Object for Modelling

Description

Create one data object from multiple sources, applying transformations via standard R formula
mechanism.

Usage

buildData(formula, na.rm = TRUE, return.class = "zoo")

Arguments

formula an object of class formula (or one that can be coerced to that class): a sym-
bolic description of the desired output data object, with the dependent side
corresponding to first column, and the independent parameters of the for-
mula assigned to the remaining columns.

na.rm drop rows with missing values?

return.class one of "zoo","data.frame","ts","its","timeSeries"

buildModel 21

Details

Makes available for use outside the quantmod workflow a dataset of appropriately transformed
variables, using the same mechanism underlying specifyModel. Offers the ability to apply
transformations to raw data using a common formula mechanism, without having to explicitly
merge different data objects.

Interally calls specifyModel followed by modelData, with the returned object being coerced
to the desired ’return.class’ if possible, otherwise returns a zoo object.

See getSymbols and specifyModel for more information regarding proper usage.

Value

An object of class return.class.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols, specifyModel, modelData

Examples

Not run:
buildData(Next(OpCl(DIA)) ~ Lag(TBILL) + I(Lag(OpHi(DIA))^2))
buildData(Next(OpCl(DIA)) ~ Lag(TBILL), na.rm=FALSE)
buildData(Next(OpCl(DIA)) ~ Lag(TBILL), na.rm=FALSE, return.class="ts")

End(Not run)

buildModel Build quantmod model given specified fitting method

Description

Construct and attach a fitted model of type method to quantmod object.

Usage

buildModel(x, method, training.per, ...)

Arguments

x An object of class quantmod created with specifyModel or an R formula

training.per character vector representing dates in ISO 8601 format “CCYY-MM-DD” or
“CCYY-MM-DD HH:MM:SS” of length 2

method A character string naming the fitting method. See details section for available
methods, and how to create new methods.

... Additional arguments to method call

22 chartSeries

Details

Currently available methods include:

lm, glm, loess, step, ppr, rpart[rpart], tree[tree], randomForest[randomForest], mars[mda], poly-
mars[polspline], lars[lars], rq[quantreg], lqs[MASS], rlm[MASS], svm[e1071], and nnet[nnet].

The training.per should match the undelying date format of the time-series data used in mod-
elling. Any other style may not return what you expect.

Additional methods wrappers can be created to allow for modelling using custom functions. The
only requirements are for a wrapper function to be constructed taking parameters quantmod,
training.data, and The function must return the fitted model object and have a pre-
dict method available. It is possible to add predict methods if non exist by adding an S3 method for
predictModel. The buildModel.skeleton function can be used for new methods.

Value

An object of class quantmod with fitted model attached

Note

See buildModel.skeleton for information on adding additional methods

Author(s)

Jeffrey Ryan

See Also

specifyModel tradeModel

Examples

Not run:
getSymbols('QQQQ',src='yahoo')
q.model = specifyModel(Next(OpCl(QQQQ)) ~ Lag(OpHi(QQQQ),0:3))
buildModel(q.model,method='lm',training.per=c('2006-08-01','2006-09-30'))
End(Not run)

chartSeries Create Financial Charts

Description

Charting tool to create standard financial charts given a time series like object. Serves as the base
function for future technical analysis additions. Possible chart styles include candles, matches (1
pixel candles), bars, and lines. Chart may have white or black background.

reChart allows for dynamic changes to the chart without having to respecify the full chart pa-
rameters.

chartSeries 23

Usage

chartSeries(x,
type = c("auto", "candlesticks", "matchsticks", "bars","line"),
subset = NULL,
show.grid = TRUE,
name = NULL,
time.scale = NULL,
TA = 'addVo()',
TAsep=';',
line.type = "l",
bar.type = "ohlc",
theme = chartTheme("black"),
layout = NA,
major.ticks='auto', minor.ticks=TRUE,
up.col,dn.col,color.vol = TRUE, multi.col = FALSE,
...)

reChart(type = c("auto", "candlesticks", "matchsticks", "bars","line"),
subset = NULL,
show.grid = TRUE,
name = NULL,
time.scale = NULL,
line.type = "l",
bar.type = "ohlc",
theme = chartTheme("black"),
major.ticks='auto', minor.ticks=TRUE,
up.col,dn.col,color.vol = TRUE, multi.col = FALSE,
...)

Arguments

x an OHLC object - see details

type style of chart to draw

subset xts style date subsetting argument

show.grid display price grid lines?

name name of chart

time.scale what is the timescale? automatically deduced

TA a vector of technical indicators and params, or character strings

TAsep TA delimiter for TA strings

line.type type of line in line chart

bar.type type of barchart - ohlc or hlc

theme a chart.theme object

layout if NULL bypass internal layout

major.ticks where should major ticks be drawn

minor.ticks should minor ticks be draw?

up.col up bar/candle color

dn.col down bar/candle color

24 chartSeries

color.vol color code volume?

multi.col 4 color candle pattern

... additional parameters

Details

Currently displays standard style OHLC charts familiar in financial applications, or line charts when
not passes OHLC data. Works with objects having explicit time-series properties.

Line charts are created with close data, or from single column time series.

The subset argument can be used to specify a particular area of the series to view. The underlying
series is left intact to allow for TA functions to use the full data set. Additionally, it is possible to
use syntax borrowed from the first and last functions, e.g. ‘last 4 months’.

TA allows for the inclusion of a variety of chart overlays and tecnical indicators. A full list is
available from addTA. The default TA argument is addVo() - which adds volume, if available, to
the chart being drawn.

theme requires an object of class chart.theme, created by a call to chartTheme. This func-
tion can be used to modify the look of the resulting chart. See chart.theme for details.

line.type and bar.type allow further fine tuning of chart styles to user tastes.

multi.col implements a color coding scheme used in some charting applications, and follows
the following rules:

grey => Op[t] < Cl[t] and Op[t] < Cl[t-1]

white => Op[t] < Cl[t] and Op[t] > Cl[t-1]

red => Op[t] > Cl[t] and Op[t] < Cl[t-1]

black => Op[t] > Cl[t] and Op[t] > Cl[t-1]

reChart takes any number of arguments from the original chart call — and redraws the chart
with the updated parameters. One item of note: if multiple color bars/candles are desired, it is
necessary to respecify the theme argument. Additionally it is not possible to change TA parameters
at present. This must be done with addTA/dropTA/swapTA/moveTA commands.

Value

Returns a standard chart plus volume, if available, suitably scaled.

Note

Most details can be fine-tuned within the function, though the code does a reasonable job of scaling
and labelling axes for the user.

The current implementation maintains a record of actions carried out for any particular chart. This
is used to recreate the original when adding new indicator. A list of applied TA actions is available
with a call to listTA. This list can be assigned to a variable and used in new chart calls to recreate
a set of technical indicators. It is also possible to force all future charts to use the same indicators
by calling setTA.

Additional motivation to add outlined candles to allow for scaling and advanced color coding is
owed to Josh Ulrich, as are the base functions (from TTR) for the yet to be released technical
analysis charting code.

Many improvements in the current version were the result of conversations with Gabor Grothendieck.
Many thanks to him.

chartTheme 25

Author(s)

Jeffrey A. Ryan

References

Josh Ulrich - TTR package and multi.col coding

See Also

getSymbols, addTA, setTA, chartTheme

Examples

Not run:
getSymbols("YHOO")
chartSeries(YHOO)
chartSeries(YHOO, subset='last 4 months')
chartSeries(YHOO, subset='2007::2008-01')
chartSeries(YHOO,theme=chartTheme('white'))
chartSeries(YHOO,TA=NULL) #no volume
chartSeries(YHOO,TA=c(addVo(),addBBands())) #add volume and Bollinger Bands from TTR

addMACD() # add MACD indicator to current chart

setTA()
chartSeries(YHOO) #draws chart again, this time will all indicators present
End(Not run)

chartTheme Create A Chart Theme

Description

Create a chart.theme object for use within chartSeries to manage desired chart colors.

Usage

chartTheme(theme = "black", ...)

Arguments

theme name of base theme

... name=value pairs to modify

Details

Used as an argument to the chartSeries family of functions, chartTheme allows for on-the-fly
modification of pre-specified chart ‘themes’. Users can modify a pre-built theme in-place, or copy
the theme to a new variable for use in subsequent charting calls.

Internally a chart.theme object is nothing more than a list of values organized by chart components.
The primary purpose of this is to facilitate minor modification on the fly, as well as provide a
template for larger changes.

26 chartTheme

Setting style arguments for TA calls via chartTheme requires the user to pass the styles as name=value
pairs with a name containing the TA call in question. See examples for assistance.

Current components that may be modified with appropriate values:

fg.col foreground color

bg.col background color

grid.col grid color

border border color

minor.tick minor tickmark color

major.tick major tickmark color

up.col up bar/candle color

dn.col down bar/candle color

up.up.col up after up bar/candle color

up.dn.col up after down bar/candle color

dn.dn.col down after down bar/candle color

dn.up.col down after up bar/candle color

up.border up bar/candle border color

dn.border down bar/candle border color

up.up.border up after up bar/candle border color

up.dn.border up after down bar/candle border color

dn.dn.border down after down bar/candle border color

dn.up.border down after up bar/candle border color

Value

A chart.theme object

Author(s)

Jeffrey A. Ryan

See Also

chartSeries

Examples

chartTheme()
chartTheme('white')
chartTheme('white',up.col='blue',dn.col='red')

A TA example
chartTheme(addRSI.col='red')

str(chartTheme())

chob-class 27

chob-class A Chart Object Class

Description

Internal Objects for Tracking and Plotting Chart Changes

Objects from the Class

Objects are created internally through the charting functions chartSeries, barChart, lineChart,
and candleChart.

Slots

device: Object of class "ANY"

call: Object of class "call"

name: Object of class "character"

type: Object of class "character"

passed.args: Object of class "ANY"

windows: Object of class "numeric"

xrange: Object of class "numeric"

yrange: Object of class "numeric"

length: Object of class "numeric"

color.vol: Object of class "logical"

multi.col: Object of class "logical"

show.vol: Object of class "logical"

show.grid: Object of class "logical"

line.type: Object of class "character"

bar.type: Object of class "character"

xlab: Object of class "character"

ylab: Object of class "character"

spacing: Object of class "numeric"

width: Object of class "numeric"

bp: Object of class "numeric"

x.labels: Object of class "character"

colors: Object of class "ANY"

time.scale: Object of class "ANY"

major.ticks: Object of class "ANY"

minor.ticks: Object of class "logical"

Methods

No methods defined with class "chob" in the signature.

28 chobTA-class

Author(s)

Jeffrey A. Ryan

See Also

chartSeries, or chobTA for links to other classes

Examples

showClass("chob")

chobTA-class A Technical Analysis Chart Object

Description

Internal storage class for handling arbitrary TA objects

Objects from the Class

Objects of class chobTA are created and returned invisibly through calls to addTA-style functions.

Slots

call: Object of class "call"

on: Object of class "ANY"

new: Object of class "logical"

TA.values: Object of class "ANY"

name: Object of class "character"

params: Object of class "ANY"

Methods

show signature(object = "chobTA"): ...

Note

It is of no external vaule to handle chobTA objects directly

Author(s)

Jeffrey A. Ryan

See Also

addTA, or chob for links to other classes

Examples

showClass("chobTA")

fittedModel 29

fittedModel quantmod Fitted Objects

Description

Extract and replace fitted models from quantmod objects built with buildModel. All objects
fitted through methods specified in buildModel calls can be extracted for further analysis.

Usage

fittedModel(object)
fittedModel(object) <- value

S3 method for class 'quantmod':
formula(x, ...)

S3 method for class 'quantmod':
plot(x, ...)

S3 method for class 'quantmod':
coefficients(object, ...)

S3 method for class 'quantmod':
coef(object, ...)

S3 method for class 'quantmod':
residuals(object, ...)

S3 method for class 'quantmod':
resid(object, ...)

S3 method for class 'quantmod':
fitted.values(object, ...)

S3 method for class 'quantmod':
fitted(object, ...)

S3 method for class 'quantmod':
anova(object, ...)

S3 method for class 'quantmod':
logLik(object, ...)

S3 method for class 'quantmod':
vcov(object, ...)

Arguments

object a quantmod object

x a quantmod object

30 fittedModel

value a new fitted model

... additional arguments

Details

Most often used to extract the final fitted object of the modelling process, usually for further analysis
with tools outside the quantmod package.

Most common methods to apply to fitted objects are available to the parent quantmod object. At
present, one can call directly the following S3 methods on a built model as if calling directly on the
fitted object. See *Usage* section.

It is also possible to add a fitted model to an object. This may be of value when applying heuristic
rule sets for trading approaches, or when fine tuning already fit models by hand.

Value

Returns an object matching that returned by a call to the method specified in buildModel.

Note

The replacement function fittedModel<- is highly experimental, and may or may not continue
into further releases.

The fitted model added must use the same names as appear in the quantmod object’s dataset.

Author(s)

Jeffrey A. Ryan

See Also

quantmod,buildModel

Examples

Not run:
x <- specifyModel(Next(OpCl(DIA)) ~ OpCl(VIX))
x.lm <- buildModel(x,method='lm',training.per=c('2001-01-01','2001-04-01'))

fittedModel(x.lm)

coef(fittedModel(x.lm))
coef(x.lm) # same

vcov(fittedModel(x.lm))
vcov(x.lm) # same
End(Not run)

getDividends 31

getDividends Load Financial Dividend Data

Description

Download, or download and append stock dividend data from Yahoo! Finance.

Usage

getDividends(Symbol,
from = "1970-01-01",
to = Sys.Date(),
env = .GlobalEnv,
src = "yahoo",
auto.assign = TRUE,
auto.update = TRUE,
verbose = FALSE, ...)

Arguments

Symbol The Yahoo! stock symbol

from date from in CCYY-MM-DD format

to date to in CCYY-MM-DD format

env where to create object

src data source (only yahoo is valid at present)

auto.assign should results be loaded to env

auto.update automatically add dividend to data object

verbose display status of retrieval

... currently unused

Details

Eventually destined to be a wrapper function along the lines of getSymbols to different sources
- this currently only support Yahoo data.

Value

If auto.assign is TRUE, the symbol will be written to the environment specified in env with a .div
appended to the name.

If auto.update is TRUE and the object is of class xts, the dividends will be included as an attribute
of the original object and be reassigned to the environment specified by env.

All other cases will return the dividend data as an xts object.

Note

This function is very preliminary - and will most likely change significantly in the future.

32 getFX

Author(s)

Jeffrey A. Ryan

References

Yahoo! Finance: http://finance.yahoo.com

See Also

getSymbols

Examples

Not run:
getSymbols("MSFT")
getDividends("MSFT")

getDividends(MSFT)
End(Not run)

getFX Download Exchange Rates

Description

Download exchange rates or metals prices from oanda.

Usage

getFX(Currencies,
from = "2007-01-01", to = Sys.Date(),
env = .GlobalEnv,
verbose = FALSE,
warning = TRUE,
auto.assign = TRUE, ...)

Arguments

Currencies Currency pairs expressed as ‘CUR/CUR’

from start date expressed in ISO CCYY-MM-DD format

to end date expressed in ISO CCYY-MM-DD format

env which environment should they be loaded into

verbose be verbose

warning show warnings

auto.assign use auto.assign

... additional parameters to be passed to getSymbols.oanda method

Details

A convenience wrapper to getSymbols(x,src=’oanda’). See getSymbols and getSymbls.oanda
for more detail.

http://finance.yahoo.com

getFinancials 33

Value

The results of the call will be the data will be assigned automatically to the environment specified
(global by default). Additionally a vector of downloaded symbol names will be returned.

See getSymbols and getSymbols.oanda for more detail.

Author(s)

Jeffrey A. Ryan

References

Oanda.com http://www.oanda.com

See Also

getSymbols, getSymbols.oanda

Examples

Not run:

getFX("USD/JPY")

getFX("EUR/USD",from="2005-01-01")
End(Not run)

getFinancials Download and View Financial Statements

Description

Download Income Statement, Balance Sheet, and Cash Flow Statements from Google Finance.

Usage

getFinancials(Symbol, env = .GlobalEnv, src = "google",
auto.assign = TRUE,
...)

viewFinancials(x, type=c('BS','IS','CF'), period=c('A','Q'),
subset = NULL)

Arguments

Symbol a valid google symbol

env where to create the object

src currently unused

auto.assign should results be loaded to the environment

... currently unused

x an object of class financials

http://www.oanda.com

34 getFinancials

type type of statement to view

period period of statement to view

subset ‘xts’ style subset string

Details

A utility to download financial statements for publically traded companies. The data is directly
from Google finance. All use of the data is under there Terms of Service, available at http:
//www.google.com/accounts/TOS.

Individual statements can be accessed using standard R list extraction tools, or by using viewFinancials.

viewFinancials allows for the use of date subsetting as available in the xts package, as well
as the specification of the type of statement to view. BS for balance sheet, IS for income statement,
and CF for cash flow statement. The period argument is used to identify which statements to view
- (A) for annual and (Q) for quarterly.

Value

Six individual matricies organized in a list of class ‘financials’:

IS a list containing (Q)uarterly and (A)nnual Income Statements

BS a list containing (Q)uarterly and (A)nnual Balance Sheets

CF a list containing (Q)uarterly and (A)nnual Cash Flow Statements

Note

As with all free data, you may be getting exactly what you pay for.

Author(s)

Jeffrey A. Ryan

References

Google Finance BETA: http://finance.google.com/finance

Examples

Not run:
JAVA <- getFinancials('JAVA')
AAPL <- getFin('AAPL')

JAVAISQ # Quarterly Income Statement
AAPLCFA # Annual Cash Flows

str(AAPL)
End(Not run)

http://www.google.com/accounts/TOS
http://www.google.com/accounts/TOS
http://finance.google.com/finance

getMetals 35

getMetals Download Daily Metals Prices

Description

Download daily metals prices from oanda.

Usage

getMetals(Metals,
from = "2007-01-01", to = Sys.Date(),
base.currency="USD",
env = .GlobalEnv,
verbose = FALSE,
warning = TRUE,
auto.assign = TRUE, ...)

Arguments

Metals metals expressed in common name or symbol form

from start date expressed in ISO CCYY-MM-DD format

to end date expressed in ISO CCYY-MM-DD format
base.currency

which currency should the price be in

env which environment should they be loaded into

verbose be verbose

warning show warnings

auto.assign use auto.assign

... additional parameters to be passed to getSymbols.oanda method

Details

A convenience wrapper to getSymbols(x,src=’oanda’).

The most useful aspect of getMetals is the ablity to specify the Metals in terms of underlying 3 char-
acter symbol or by name (e.g. XAU (gold) , XAG (silver), XPD (palladium), or XPT (platinum)).

There are unique aspects of any continuously traded commodity, and it is recommended that the
user visit http://www.oanda.com for details on specific pricing issues.

See getSymbols and getSymbls.oanda for more detail.

Value

Data will be assigned automatically to the environment specified (global by default). If auto.assign
is set to FALSE, the data from a single metal request will simply be returned from the function call.

If auto.assign is used (the default) a vector of downloaded symbol names will be returned.

See getSymbols and getSymbols.oanda for more detail.

http://www.oanda.com

36 getModelData

Author(s)

Jeffrey A. Ryan

References

Oanda.com http://www.oanda.com

See Also

getSymbols, getSymbols.oanda

Examples

Not run:

getFX(c("gold","XPD"))

getFX("plat",from="2005-01-01")
End(Not run)

getModelData Update model’s dataset

Description

Update currently specified or built model with most recent data.

Usage

getModelData(x, na.rm = TRUE)

Arguments

x An object of class quantmod

na.rm Boolean. Remove NA values. Defaults to TRUE

Details

Primarily used within specify model calls, getModelData is used to retrieve the appropriate
underlying variables, and apply model specified transformations automatically. It can be used to
also update a current model in memory with the most recent data.

Value

Returns object of class quantmod.OHLC

Author(s)

Jeffrey Ryan

http://www.oanda.com

getQuote 37

See Also

getSymbols load data specifyModel create model structure buildModel construct model
modelData extract model dataset

Examples

Not run:
my.model <- specifyModel(Next(OpCl(QQQQ)) ~ Lag(Cl(NDX),0:5))
getModelData(my.model)
End(Not run)

getQuote Download Current Stock Quote

Description

Fetch current stock quote(s) from specified source. At present this only handle sourcing quotes
from Yahoo Finance, but it will be extended to additional sources over time.

Usage

getQuote(Symbols, src = "yahoo", what = standardQuote(), ...)

standardQuote(src="yahoo")
yahooQF(names)

Arguments

Symbols character string of symbols, seperated by semi-colons

src source of data (only yahoo is implemented)

what what should be retrieved

names which data should be retrieved

... currently unused

Value

A maximum of 200 symbols may be requested per call to Yahoo!, and all requested will be returned
in one data.frame object.

getQuote returns a data frame with rows matching the number of Symbols requested, and the
columns matching the requested columns.

The what argument allows for specific data to be requested from yahoo, using Yahoo!’s formatting
string. A list and interactive selection tool can be seen with yahooQF.

standardQuote currently only applied to Yahoo! data, and returns an object of class quoteFor-
mat, for use within the getQuote function.

Author(s)

Jeffrey A. Ryan

38 getSymbols.FRED

References

Yahoo! Finance finance.yahoo.com gummy-stuff.org www.gummy-stuff.org/Yahoo-data.
htm

See Also

getSymbols

Examples

Not run:
getQuote("AAPL")
getQuote("QQQQ;SPY;^VXN",what=yahooQF(c("Bid","Ask")))
standardQuote()
yahooFQ()
End(Not run)

getSymbols.FRED Download Federal Reserve Economic Data - FRED(R)

Description

R access to over 11,000 data series accessible via the St. Louis Federal Reserve Bank’s FRED
system.

Downloads Symbols to specified env from ‘research.stlouisfed.org’. This method is not to be
called directly, instead a call to getSymbols(Symbols,src=’FRED’) will in turn call this
method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve
as a guide to creating additional getSymbols ‘methods’.

Usage

getSymbols.FRED(Symbols,
env,
return.class = "xts",
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

return.class class of returned object

... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of many methods for loading data for use with quantmod. Essentially a simple wrapper to the
underlying FRED data download site.

Naming conventions must follow those as seen on the Federal Reserve Bank of St Louis’s website
for FRED. A lookup facility will hopefully be incorporated into quantmod in the near future.

finance.yahoo.com
www.gummy-stuff.org/Yahoo-data.htm
www.gummy-stuff.org/Yahoo-data.htm

getSymbols.MySQL 39

Value

A call to getSymbols.FRED will load into the specified environment one object for each Symbol
specified, with class defined by return.class. Presently this may be ts, its, zoo, xts, or
timeSeries.

Author(s)

Jeffrey A. Ryan

References

St. Louis Fed: Economic Data - FRED http://research.stlouisfed.org/fred2/

See Also

getSymbols, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
CPI data to the global environment
The last example is what NOT to do!

Method #1
getSymbols('CPIAUCNS',src='FRED')

Method #2
setDefaults(getSymbols,src='FRED')
OR

setSymbolLookup(CPIAUCNS='FRED')

getSymbols('CPIAUCNS')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.FRED('CPIAUCNS',env=globalenv())
End(Not run)

getSymbols.MySQL Retrieve Data from MySQL Database

Description

Fetch data from MySQL database. As with other methods extending the getSymbols function,
this should NOT be called directly. Its documentation is meant to highlight the formal arguments,
as well as provide a reference for further user contributed data tools.

http://research.stlouisfed.org/fred2/

40 getSymbols.MySQL

Usage

getSymbols.MySQL(Symbols,
env,
return.class = 'xts',
db.fields = c("date", "o", "h", "l", "c", "v", "a"),
field.names = NULL,
user = NULL,
password = NULL,
dbname = NULL,
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

return.class desired class of returned object. Can be xts, zoo, data.frame, ts, or its. (zoo)

db.fields character vector indicating names of fields to retrieve

field.names names to assign to returned columns

user username to access database

password password to access database

dbname database name

... currently not used

Details

Meant to be called internally by getSymbols (see also)

One of a few currently defined methods for loading data for use with quantmod. Its use requires
the packages DBI and MySQL, along with a running MySQL database with tables corresponding
to the Symbol name.

The purpose of this abstraction is to make transparent the ‘source’ of the data, allowing instead the
user to concentrate on the data itself.

Value

A call to getSymbols.MySQL will load into the specified environment one object for each Symbol
specified, with class defined by return.class.

Note

The default configuration needs a table named for the Symbol specified (e.g. MSFT), with column
names date,o,h,l,c,v,a. For table layout changes it is best to use setDefaults(getSymbols.MySQL,...)
with the new db.fields values specified.

Author(s)

Jeffrey A. Ryan

getSymbols 41

References

MySQL AB http://www.mysql.com

David A. James and Saikat DebRoy (2006). R Interface to the MySQL databse. www.
omegahat.org

R-SIG-DB. DBI: R Database Interface

See Also

getSymbols, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

setDefaults(getSymbols.MySQL,user='jdoe',password='secret',
dbname='tradedata')

Method #1
getSymbols('MSFT',src='MySQL')

Method #2
setDefaults(getSymbols,src='MySQL')
OR

setSymbolLookup(MSFT='MySQL')

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.MySQL('MSFT',env=globalenv())
End(Not run)

getSymbols Load and Manage Data from Multiple Sources

Description

Functions to load and manage Symbols in specified environment. Used by specifyModel to
retrieve symbols specified in first step of modelling procedure. Not a true S3 method, but methods
for different data sources follow an S3-like naming convention. Additional methods can be added
by simply adhering to the convention.

Current src methods available are: yahoo, google, MySQL, FRED, csv, RData, and Oanda.

Data is loaded silently without user assignment by default.

http://www.mysql.com
www.omegahat.org
www.omegahat.org

42 getSymbols

Usage

getSymbols(Symbols = NULL,
env = .GlobalEnv,
reload.Symbols = FALSE,
verbose = FALSE,
warnings = TRUE,
src = "yahoo",
symbol.lookup = TRUE,
auto.assign = TRUE,
...)

showSymbols(env=.GlobalEnv)
removeSymbols(Symbols=NULL,env=.GlobalEnv)
saveSymbols(Symbols = NULL,

file.path=stop("must specify 'file.path'"),
env = .GlobalEnv)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)
reload.Symbols

boolean to reload current symbols in specified environment. (FALSE)

verbose boolean to turn on status of retrieval. (FALSE)

warnings boolean to turn on warnings. (TRUE)

src character string specifying sourcing method. (yahoo)
symbol.lookup

retrieve symbol’s sourcing method from external lookup (TRUE)

auto.assign should results be loaded to the environment

file.path character string of file location

... additional parameters

Details

getSymbols is a wrapper to load data from different sources - be them local or remote. Data
is fetched through one of the available getSymbols methods and saved in the env specified -
the .GlobalEnv by default. Data is loaded in much the same way that load behaves. By default,
it is assigned automatically to a variable in the specified environment, without the user explicitly
assigning the returned data to a variable.

The previous sentence’s point warrants repeating - getSymbols is called for its side effects, and
does not return the data object loaded. The data is ‘loaded’ silently by the function into the user’s
environment - or an environment specified. This behavior can be overridden by setting auto.assign
to FALSE, though it is not advised.

By default the variable chosen is an R-legal name derived from the symbol being loaded. It is
possible, using setSymbolLookup to specify an alternate name if the default is not desired, see
that function for details.

The result of a call to getSymbols when auto.assign is set to TRUE (the default) is a new object
or objects in the user’s specified environment - with the loaded symbol(s) names returned upon exit.

getSymbols 43

If auto.assign is set to FALSE the data will be returned from the call, and will require the user to
assign the results himself.

Most, if not all, documentation and functionality in quantmod assumes that auto.assign remains
set to TRUE.

Upon completion a list of loaded symbols is stored in the global environment under the name
.getSymbols.

Objects loaded by getSymbols with auto.assign=TRUE can be viewed with showSymbols and
removed by a call to removeSymbols. Additional data loading “methods” can be created simply
by following the S3-like naming convention where getSymbols.NAME is used for your function
NAME. See getSymbols source code.

setDefaults(getSymbols) can be used to specify defaults for getSymbols arguments.
setDefaults(getSymbols.MySQL)may be used for arguments specific to getSymbols.MySQL,
etc.

The “sourcing” of data is managed internally through a complex lookup procedure. If symbol.lookup
is TRUE (the default), a check is made if any symbol has had its source specified by setSymbolLookup.

If not set, the process continues by checking to see if src has been specified by the user in the
function call. If not, any src defined with setDefaults(getSymbols,src=) is used.

Finally, if none of the other source rules apply the default getSymbols src method is used
(‘yahoo’).

Value

A call to getSymbols will load into the specified environment one object for each Symbol spec-
ified, with class defined by return.class. Presently this may be ts, its, zoo, xts, or
timeSeries.

If auto.assign is set to FALSE an object of type return.class will be returned.

Note

While it is possible to load symbols as classes other than zoo, quantmod requires most, if not all,
data to be of class zoo or inherited from zoo - e.g. xts. The additional methods are meant mainly
to be of use for those using the functionality outside of the quantmod workflow.

Author(s)

Jeffrey A. Ryan

See Also

getModelData,specifyModel, setSymbolLookup, getSymbols.csv, getSymbols.RData,
getSymbols.oanda, getSymbols.yahoo, getSymbols.google, getSymbols.FRED,
getFX, getMetals,

Examples

Not run:
setSymbolLookup(QQQQ='yahoo',SPY='MySQL')

getSymbols(c('QQQQ','SPY'))
loads QQQQ from yahoo (set with setSymbolLookup)
loads SPY from MySQL (set with setSymbolLookup)

44 getSymbols.SQLite

getSymbols('F')
loads Ford market data from yahoo (the formal default)

setDefaults(getSymbols,verbose=TRUE,src='MySQL')
getSymbols('DIA')
loads symbol from MySQL database (set with setDefaults)

getSymbols('F',src='yahoo',return.class='ts')
loads Ford as time series class ts

End(Not run)

getSymbols.SQLite Retrieve Data from SQLite Database

Description

Fetch data from SQLite database. As with other methods extending getSymbols this function
should NOT be called directly.

Usage

getSymbols.SQLite(Symbols,
env,
return.class = 'xts',
db.fields = c("row_names",

"Open",
"High",
"Low",
"Close",
"Volume",
"Adjusted"),

field.names = NULL,
dbname = NULL,
POSIX = TRUE,
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create the objects

return.class desired class of returned object

db.fields character vector naming fields to retrieve

field.names names to assign to returned columns

dbname database name

POSIX are rownames numeric

... additional arguments

getSymbols.csv 45

Details

Meant to be called internally by getSymbols (see also)

One of a few currently defined methods for loading data for use with ’quantmod’. Its use requires
the packages ’DBI’ and ’RSQLite’, along with a SQLite database.

The purpose of this abstraction is to make transparent the ’source’ of the data, allowing instead the
user to concentrate on the data itself.

Value

A call to getSymbols.SQLite will load into the specified environment one object for each ’Symbol’
specified, with class defined by ’return.class’.

Note

This function is experimental at best, and has not been thoroughly tested. Use with caution, and
please report any bugs to the maintainer of quantmod.

Author(s)

Jeffrey A. Ryan

References

SQLite http://www.sqlite.org
David A. James RSQLite: SQLite interface for R
R-SIG-DB. DBI: R Database Interface

See Also

getSymbols

Examples

Not run:
getSymbols("QQQQ",src="SQLite")
End(Not run)

getSymbols.csv Load Data from csv File

Description

Downloads Symbols to specified env from local comma seperated file. This method is not to
be called directly, instead a call to getSymbols(Symbols,src=’csv’) will in turn call this
method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve
as a guide to creating additional getSymbols ‘methods’.

http://www.sqlite.org

46 getSymbols.csv

Usage

getSymbols.csv(Symbols,
env,
dir="",
return.class = "xts",
extension="csv",
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

dir directory of csv file

return.class class of returned object

extension extension of csv file

... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a
simple wrapper to the underlying R read.csv.

Value

A call to getSymbols.csv will load into the specified environment one object for each Symbol
specified, with class defined by return.class. Presently this may be ts, its, zoo, xts, or
timeSeries.

Note

This has yet to be tested on a windows platform. It should work though file seperators may be an
issue.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols, read.csv, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT',src='csv')

getSymbols.google 47

Method #2
setDefaults(getSymbols,src='csv')
OR

setSymbolLookup(MSFT='csv')

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.csv('MSFT',verbose=TRUE,env=globalenv())
End(Not run)

getSymbols.google Download OHLC Data From Google Finance

Description

Downloads Symbols to specified env from ‘finance.google.com’. This method is not to be
called directly, instead a call to getSymbols(Symbols,src=’google’) will in turn call
this method. It is documented for the sole purpose of highlighting the arguments accepted, and to
serve as a guide to creating additional getSymbols ‘methods’.

Usage

getSymbols.google(Symbols,
env,
return.class = 'xts',
from = "2007-01-01",
to = Sys.Date(),
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded
env where to create objects. (.GlobalEnv)
return.class class of returned object
from Retrieve no earlier than this date
to Retrieve though this date
... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a
simple wrapper to the underlying Google Finance site for historical data.

A word of warning. Google is the home of BETA, and historic data is no exception. There is a BUG
in practically all series that include the dates Dec 29,30, and 31 of 2003. The data will show the
wrong date and corresponding prices. This essentially makes it useless, but if they ever apply a fix
the data is nice(r) than Yahoo, in so much as it is all split adjusted and there is forty years worth to
be had. As long as you skip the holiday week of 2003. :)

48 getSymbols.google

Value

A call to getSymbols.google will load into the specified environment one object for each Symbol
specified, with class defined by return.class. Presently this may be ts, its, zoo, xts, or
timeSeries.

Note

As mentioned in the details section, a serious flaw exists within the google database/SQL. A caution
is issued when retrieving data via this method if this particular error is encountered, but one can only
wonder what else may be wrong. Caveat emptor.

Author(s)

Jeffrey A. Ryan

References

Google Finance: http://finance.google.com

See Also

getSymbols, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT',src='google')

Method #2
setDefaults(getSymbols,src='google')
OR

setSymbolLookup(MSFT='google')

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.google('MSFT',verbose=TRUE,env=globalenv())
End(Not run)

http://finance.google.com

getSymbols.oanda 49

getSymbols.oanda Download Currency and Metals Data from Oanda.com

Description

Access to 191 currency and metal prices, downloadable as more that 36000 currency pairs from
Oanda.com.

Downloads Symbols to specified env from www.oanda.com historical currency database. This
method is not meant to be called directly, instead a call to getSymbols(\dQuote{x},src=\dQuote{oanda})
will in turn call this method. It is documented for the sole purpose of highlighting the arguments
accepted, and to serve as a guide to creating additional getSymbols ’methods’.

Usage

getSymbols.oanda(Symbols,
env,
return.class = "xts",
from = "2007-01-01",
to = Sys.Date(),
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded - expressed
as a currency pair. (e.g. U.S. Dollar to Euro rate would be expressed as a string
“USD/EUR”. The naming convention follows from Oanda.com, and a table of
possible values is available by calling oanda.currencies

env where to create objects.

return.class class of returned object

from Start of series expressed as "CCYY-MM-DD"

to Start of series expressed as "CCYY-MM-DD"

... additional parameters

Details

Meant to be called internally by getSymbols only.

Oanda data is 7 day daily average price data, that is Monday through Sunday. There is a limit of
2000 days per request, and getSymbols will fail with a warning that the limit has been exceeded.

Value

A call to getSymbols(Symbols,src="oanda") will load into the specified environment one object for
each ’Symbol’ specified, with class defined by ’return.class’. Presently this may be ’ts’, ’its’, ’zoo’,
’xts’, or ’timeSeries’.

Note

Oanda rates are quoted as one unit of base currency to the equivelant amount of foreign currency.

www.oanda.com

50 getSymbols.rda

Author(s)

Jeffrey A. Ryan

References

Oanda.com http://www.oanda.com

See Also

Currencies: getSymbols.FRED, getSymbols

Examples

Not run:
getSymbols("USD/EUR",src="oanda")
getSymbols("USD/EUR",src="oanda",from="2005-01-01")
End(Not run)

getSymbols.rda Load Data from R Binary File

Description

Downloads Symbols to specified env from local R data file. This method is not to be called
directly, instead a call to getSymbols(Symbols,src=’rda’) will in turn call this method.
It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide
to creating additional getSymbols ‘methods’.

Usage

getSymbols.rda(Symbols,
env,
dir="",
return.class = "xts",
extension="rda",
col.names=c("Open","High","Low","Close","Volume","Adjusted"),
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

dir directory of rda/RData file

return.class class of returned object

extension extension of R data file

col.names data column names

... additional parameters

http://www.oanda.com

getSymbols.yahoo 51

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a
simple wrapper to the underlying R load.

Value

A call to getSymbols.csv will load into the specified environment one object for each Symbol
specified, with class defined by return.class. Presently this may be ts, its, zoo, xts,
data.frame, or timeSeries.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols, load, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT',src='rda')
getSymbols('MSFT',src='RData')

Method #2
setDefaults(getSymbols,src='rda')
OR

setSymbolLookup(MSFT='rda')
OR

setSymbolLookup(MSFT=list(src='rda'))

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.rda('MSFT',verbose=TRUE,env=globalenv())
End(Not run)

getSymbols.yahoo Download OHLC Data From Yahoo Finance

52 getSymbols.yahoo

Description

Downloads Symbols to specified env from ‘finance.yahoo.com’. This method is not to be called
directly, instead a call to getSymbols(Symbols,src=’yahoo’)will in turn call this method.
It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide
to creating additional getSymbols ‘methods’.

Usage

getSymbols.yahoo(Symbols,
env,
return.class = 'xts',
from = "2007-01-01",
to = Sys.Date(),
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

return.class class of returned object

from Retrieve data no earlier than this date. (1990-01-01)

to Retrieve data through this date (Sys.Date())

... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a
simple wrapper to the underlying Yahoo! finance site’s historical data download.

Value

A call to getSymbols.yahoo will load into the specified environment one object for each Symbol
specified, with class defined by return.class. Presently this may be ts, its, zoo, xts, or
timeSeries.

Author(s)

Jeffrey A. Ryan

References

Yahoo Finance: http://finance.yahoo.com

See Also

getSymbols, setSymbolLookup

http://finance.yahoo.com

has.OHLC 53

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT',src='yahoo')

Method #2
setDefaults(getSymbols,src='yahoo')
OR

setSymbolLookup(MSFT='yahoo')

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.yahoo('MSFT',env=globalenv())
End(Not run)

has.OHLC Check For OHLC Data

Description

A set of functions to check for appropriate OHLC and HLC column names within a data object, as
well as the availability and position of those columns.

Usage

is.OHLC(x)
has.OHLC(x, which = FALSE)

is.HLC(x)
has.HLC(x, which = FALSE)

has.Op(x, which = FALSE)
has.Hi(x, which = FALSE)
has.Lo(x, which = FALSE)
has.Cl(x, which = FALSE)
has.Vo(x, which = FALSE)
has.Ad(x, which = FALSE)

Arguments

x data object

which disply position of match

54 internal-quantmod

Details

Mostly used internally by quantmod, they can be useful for checking whether an object can be
used in OHLC requiring functions like Op, OpCl, etc.

Columns names must contain the full description of data, that is, Open, High, Low, Close, Volume
or Adjusted. Abbreviations will return FALSE (or NAwhen which=TRUE). See quantmod.OHLC
for details of quantmod naming conventions.

is.OHLC (and is.HLC, similarly) will only return TRUE is there are columns for Open, High, Low
and Close. Additional columns will not affect the value.

Value

A logical value indicating success or failure by default.

If which=TRUE, a numeric value representing the column position will be returned.

is.OHLC and is.HLC return a single value of TRUE or FALSE.

Author(s)

Jeffrey A. Ryan

See Also

quantmod.OHLC,OHLC.Transformations

Examples

Not run:
getSymbols("YHOO")

is.OHLC(YHOO)
has.OHLC(YHOO)

has.Ad(YHOO)

End(Not run)

internal-quantmod Internal quantmod Objects

Description

To be documented...

is.quantmod 55

is.quantmod Test If Object of Type quantmod

Description

Test if object is of type quantmod or quantmodResults.

Usage

is.quantmod(x)
is.quantmodResults(x)

Arguments

x object to test

Value

Boolean TRUE or FALSE

Author(s)

Jeffrey A. Ryan

See Also

specifyModel, tradeModel

modelData Extract Dataset Created by specifyModel

Description

Extract from a quantmod object the dataset created for use in modelling.

specifyModel creates a zoo object for use in subsequent workflow stages (buildModel,tradeModel)
that combines all model inputs, from a variety of sources, into one model frame.

modelData returns this object.

Usage

modelData(x, data.window = NULL, exclude.training = FALSE)

Arguments

x a quantmod object

data.window a character vector of subset start and end dates to return
exclude.training

remove training period

56 modelSignal

Details

When a model is created by specifyModel, it is attached to the returned object. One of the slots
of this S4 class is model.data.

Value

an object of class zoo containing all transformations to data specified in specifyModel.

Author(s)

Jeffrey A. Ryan

See Also

specifyModel,getModelData

Examples

Not run:
m <- specifyModel(Next(OpCl(SPY)) ~ Cl(SPY) + OpHi(SPY) + Lag(Cl(SPY)))
modelData(m)
End(Not run)

modelSignal Extract Model Signal Object

Description

Extract model signal object from quantmodResults object as an object of class zoo.

Usage

modelSignal(x)

Arguments

x object of class quantmodResults

Details

For use after a call to tradeModel to extract the generated signal of a given quantmod model.
Normally this would not need to be called by the end user unless he was manually post processing
the trade results.

Value

A zoo object indexed by signal dates.

Author(s)

Jeffrey A. Ryan

newTA 57

See Also

tradeModel

newTA Create A New TA Indicator For chartSeries

Description

Functions to assist in the creation of indicators or content to be drawn on plots produced by chart-
Series.

Usage

addTA(ta,
order = NULL,
on = NA,
legend = "auto",
...)

newTA(FUN,
tFUN,
on = NA,
legend.name,
fdots = TRUE,
cdots = TRUE,
data.at = 1,
...)

Arguments

ta data to be plotted

order which should the columns (if > 1) be plotted

legend what custom legend text should be added to the chart.

FUN Main filter function name - as a symbol

tFUN Pre-filter transformation or extraction function

on where to draw

legend.name optional legend heading, automatically derived otherwise

fdots should any . . . be included in the main filter call

cdots should any . . . be included in the resultant function object. fdots=TRUE will
override this to TRUE.

data.at which arguement to the main filter function is for data.

... any additonal graphical parameters/default to be included.

58 newTA

Details

Both addTA and newTA can be used to dynamically add custom content to a displayed chart.

addTA takes a series of values, either in a form coercible to xts or of the same length as the
charted series has rows, and displays the results in either a new TA sub-window, or over/underlayed
on the main price chart. If the object can be coerced to xts, the time values present must only
be within the original series time-range. Internally a merge of dates occurs and will allow for the
plotting of discontinuous series.

The order argument allows for multiple column data to be plotted in an order that makes the most
visual sense.

Specifying a legend will override the standard parsing of the addTA call to attempt a guess at a
suitable title for the sub-chart. Specifying this will cause the standard last value to not be printed.

The . . . arg to addTA is used to set graphical parameters interpretable by lines.

newTA acts as more of a skeleton function, taking functions as arguments, as well as charting pa-
rameters, and returns a function that can be called in the same manner as the built-in TA tools, such
as addRSI and addMACD. Essentially a dynamic code generator that allows for highly customiz-
able chart tools with minimal (possibly zero) coding. It is also possible to modify the resultant code
to further change behavior.

To create a new TA function with newTA certain arguments must be specified.

The FUN argument is a function symbol (or coercible to such) that is the primary filter to be used on
the core-data of a chartSeries chart. This can be like most of the functions within the TTR package
— e.g. RSI or EMA. The resultant object of the function call will be equal to calling the function on
the original data passed into the chartSeries function that created the chart. It should be coercible to
a matrix object, of one or more columns of output. By default all columns of output will be added
to the chart, unless suppressed by passing the appropriately positioned type=’n’ as the . . . arg.
Note that this will not suppress the labels added to the chart.

The tFUN argument will be called on the main chart’s data prior to passing it to FUN. This must be
a function symbol or a character string of the name function to be called.

The on is used to identify which subchart to add the graphic to. By default, on=NA will draw the
series in a new subchart below the last indicator. Setting this to either a positive or negative value
will allow for the series to be super-imposed on, or under, the (sub)chart specified, respectively. A
value of 1 refers to the main chart, and at present is the only location supported.

legend.name will change the main label for a new plot.

fdots and cdots enable inclusion or suppression of the . . . within the resulting TA code’s call to
FUN, or the argument list of the new TA function, respectively. In order to facilitate user-specified
graphical parameters it is usually desireable to not impose artificial limits on the end-user with
constraints on types of parameters available. By default the new TA function will include the dots
argument, and the internal FUN call will keep all arguments, including the dots. This may pose
issues if the internal function then passes those . . . arguments to a function that can’t handle them.

The final argument is data.at which is the position in the FUN argument list which expects the
data to be passed in at. This default to the sensible first position, though can be changed at the time
of creation by setting this argument to the required value.

While the above functions are usually sufficient to construct very pleasing graphical additions to
a chart, it may be necessary to modify by-hand the code produced. This can be accomplished by
dumping the function to a file, or using fix on it during an interactive session.

Another item of note, with respect to newTA is the naming of the main legend label. Following
addTA convention, the first ‘add’ is stripped from the function name, and the rest of the call’s name
is used as the label. This can be overridden by specifying legend.name in the construction of

options.expiry 59

the new TA call, or by passing legend into the new TA function. Subtle differences exist, with the
former being the preferred solution.

While both functions can be used to build new indicators without any understanding of the internal
chartSeries process, it may be beneficial in more complex cases to have a knowledge of the multi-
step process involved in creating a chart via chartSeries.

to be added...

Value

addTA will invisibly return an S4 object of class chobTA. If this function is called interactively,
the chobTA object will be evaluated and added to the current chart.

newTA will return a function object that can either be assigned or evaluated. Evaluating this func-
tion will follow the logic of any standard addTA-style call, returning invisibly a chobTA object, or
adding to the chart.

Note

Both interfaces are meant to fascilitate custom chart additions. addTA is for adding any arbitrary
series to a chart, where-as newTA works with the underlying series with the main chart object. The
latter also acts as a dynamic TA skeleton generation tool to help develop reusable TA generation
code for use on any chart.

Author(s)

Jeffrey A. Ryan

See Also

chartSeries, TA, chob, chobTA

Examples

Not run:
getSymbols('SBUX')
barChart(SBUX)
addTA(EMA(Cl(SBUX)), on=1, col=6)
addTA(OpCl(SBUX), col=4, type='b', lwd=2)
create new EMA TA function
newEMA <- newTA(EMA, Cl, on=1, col=7)
newEMA()
newEMA(on=NA, col=5)
End(Not run)

options.expiry Calculate Contract Expirations

Description

Return the index of the contract expiration date. The third Friday of the month for options, the last
third Friday of the quarter for futures.

60 options.expiry

Usage

options.expiry(x)
futures.expiry(x)

Arguments

x a time-indexed zoo object

Details

Designed to be used within a charting context via addExpiry, the values returned are based on
the description above. Exceptions, though rare, are not accounted for.

Value

A numeric vector of values to index on.

Note

There is currently no accounting for holidays that may interfere with the general rule. Additionally
all efforts have been focused on US equity and futures markets.

Author(s)

Jeffrey A. Ryan

References

put references to the literature/web site here

See Also

addExpiry

Examples

Not run:
getSymbols("AAPL")

options.expiry(AAPL)
futures.expiry(AAPL)

AAPL[options.expiry(AAPL)]
End(Not run)

periodReturn 61

periodReturn Calculate Periodic Returns

Description

Given a set of prices, return periodic returns.

Usage

periodReturn(x,
period='monthly',
subset=NULL,
type='arithmetic',
leading=TRUE,
...)

dailyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

weeklyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

monthlyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

quarterlyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

annualReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

yearlyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

allReturns(x, subset=NULL, type='arithmetic',
leading=TRUE)

Arguments

x object of state prices, or an OHLC type object

period character string indicating time period. Valid entries are ‘daily’, ‘weekly’, ‘monthly’,
‘quarterly’, ‘yearly’. All are accessible from wrapper functions described below.
Defaults to monthly returns (same as monthlyReturn)

subset an xts/ISO8601 style subset string

type type of returns: arithmetic (discrete) or log (continuous)

leading should incomplete leading period returns be returned

... passed along to to.period

Details

periodReturn is the underlying function for wrappers:

• allReturns: calculate all available return periods

• dailyReturn: calculate daily returns

• weeklyReturn: calculate weekly returns

62 quantmod-class

• monthlyReturn: calculate monthly returns

• quarterlyReturn: calculate quarterly returns

• annualReturn: calculate annual returns

Value

Returns object of the class that was originally passed in, with the possible exception of monthly and
quarterly return indicies being changed to class yearmon and yearqtr where available. This
can be overridden with the indexAt argument passed in the . . . to the to.period function.

By default, if subset is NULL, the full dataset will be used.

Note

Attempts are made to re-convert the resultant series to its original class, if supported by the xts
package. At present, objects inheriting from the ‘ts’ class are returned as xts objects. This is to
make the results more visually appealling and informative. All xts objects can be converted to
class ts with as.ts if that is desirable.

The first and final row of returned object will have the period return to last date, i.e. this week/month/quarter/year
return to date even if the start/end is not the start/end of the period. Leading period calculations can
be suppressed by setting leading=FALSE.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols to.period

Examples

Not run:
getSymbols('QQQQ',src='yahoo')
allReturns(QQQQ) # returns all periods

periodReturn(QQQQ,period='yearly',subset='2003::') # returns years 2003 to present
periodReturn(QQQQ,period='yearly',subset='2003') # returns year 2003

rm(QQQQ)
End(Not run)

quantmod-class Class "quantmod"

Description

Objects of class quantmod help to manage the process of model building within the quantmod
package. Created automatically by a call to specifyModel they carry information to be used by
a variety of accessor functions and methods.

quantmod-package 63

Objects from the Class

Objects can be created by calls of the form new("quantmod", ...).

Normally objects are created as a result of a call to specifyModel.

Slots

model.id: Object of class "character"

model.spec: Object of class "formula"

model.formula: Object of class "formula"

model.target: Object of class "character"

model.inputs: Object of class "character"

build.inputs: Object of class "character"

symbols: Object of class "character"

product: Object of class "character"

price.levels: Object of class "zoo"

training.data: Object of class "Date"

build.date: Object of class "Date"

fitted.model: Object of class "ANY"

model.data: Object of class "zoo"

quantmod.version: Object of class "numeric"

Methods

No methods defined with class "quantmod" in the signature.

Author(s)

Jeffrey A. Ryan

Examples

showClass("quantmod")

quantmod-package Quantitative Financial Modelling Framework

Description

Quantitative Financial Modelling and Trading Framework for R

64 quantmod.OHLC

Details

Package: quantmod
Type: Package
Version: 0.3-6
Revision: 433
Date: 2007-06-09
Depends: xts(>=0.0-15),Defaults
Suggests: DBI,RMySQL,TTR,fSeries,its
LazyLoad: yes
License: GPL-3
URL: http://www.quantmod.com

The quantmod package for R is designed to assist the quantitative trader in the development, testing,
and deployment of statistically based trading models.

What quantmod IS

A rapid prototyping environment, where quant traders can quickly and cleanly explore and build
trading models.

What quantmod is NOT

A replacement for anything statistical. It has no ’new’ modelling routines or analysis tool to speak
of. It does now offer charting not currently available elsewhere in R, but most everything else
is more of a wrapper to what you already know and love about the langauge and packages you
currently use.

quantmod makes modelling easier by removing the repetitive workflow issues surrounding data
management, modelling interfaces, and performance analysis.

Author(s)

Jeffrey A. Ryan

Maintainer: Jeffrey A. Ryan <jeff.a.ryan@gmail.com>

quantmod.OHLC Create Open High Low Close Object

Description

Coerce an object with the apporpriate columns to class quantmod.OHLC, which extends zoo.

Usage

as.quantmod.OHLC(x,
col.names = c("Open", "High",

"Low", "Close",
"Volume", "Adjusted"),

name = NULL, ...)

setSymbolLookup 65

Arguments

x object of class zoo

col.names suffix for columns

name name to attach unique column suffixes to, defaults to the object name

... additional arguments (unused)

Details

quantmod.OHLC is actually just a renaming of an object of class zoo, with the convention of
NAME.Open, NAME.High, ... for the column names.

Additionally methods may be written to handle or check for the above conditions within other
functions - as is the case within the quantmod package.

Value

An object of class c(’quantmod.OHLC’,’zoo’)

Author(s)

Jeffrey A. Ryan

See Also

OHLC.Transformations, getSymbols

setSymbolLookup Manage Symbol Lookup Table

Description

Create and manage Symbol defaults lookup table within R session for use in getSymbols calls.

Usage

setSymbolLookup(...)
getSymbolLookup(Symbols=NULL)
unsetSymbolLookup(Symbols,confirm=TRUE)

saveSymbolLookup(file,dir="")
loadSymbolLookup(file,dir="")

Arguments

... name=value pairs for symbol defaults

Symbols name of symbol(s)

confirm warn before deleting lookup table

file filename

dir directory of filename

66 setSymbolLookup

Details

Use of these functions allows the user to specify a set of default parameters for each Symbol to be
loaded.

Different sources (e.g. yahoo, MySQL, csv), can be specified for each Symbol of interest. The
sources must be valid getSymbols methods - see getSymbols for details on which methods
are available, as well as how to add additional methods.

The argument list to setSymbolLookup is simply the unquoted name of the Symbol matched
to the desired default source, or list of Symbol specific parameters.

For example, to signify that the stock data for Sun Microsystems (JAVA) should be downloaded
from Yahoo! Finance, one would call setSymbolLookup(JAVA=’yahoo’) or setSymbolLookup(JAVA=list(src=’yahoo’))

It is also possible to specify additional, possibly source specific, lookup details on a per symbol
basis. These include an alternate naming convention (useful for sites like Yahoo! where certain
non-traded symbols are prepended with a caret, or more correctly a curcumflex accent. In that case
one would specify setSymbolLookup(DJI=list(name="^DJI",src="yahoo"))) as
well as passed parameters like dbname and password for database sources. See the specific
getSymbols function related to the source in question for more details of each implementation.

All changes are made to the current list, and will persist only until the end of the session. To always
use the same defaults it is necessary to call setSymbolLookup with the appropriate parameters
from a startup file (e.g. .Rprofile) or to use saveSymbolLookup and loadSymbolLookup to
save and restore lookup tables.

To unset a specific Symbol’s defaults, simply assign NULL to the Symbol.

Value

Called for its side effects, the function changes the options value for the specified Symbol
through a call to options(getSymbols.sources=...)

Note

Changes are NOT persistent across sessions, as the table is stored in the session options by default.

This may change to allow for an easier to manage process, as for now it is designed to minimize the
clutter created during a typical session.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols, options,

Examples

setSymbolLookup(QQQQ='yahoo',DIA='MySQL')
getSymbolLookup('QQQQ')
getSymbolLookup(c('QQQQ','DIA'))

Not run:
Will download QQQQ from yahoo
and load DIA from MySQL
getSymbols(c('QQQQ','DIA'))

setTA 67

End(Not run)

Use something like this to always retrieve
from the same source

.First <- function() {
require(quantmod,quietly=TRUE)
quantmod::setSymbolLookup(JAVA="MySQL")

}

OR

saveSymbolLookup()
loadSymbolLookup()

setTA Manage TA Argument Lists

Description

Used to manage the TA arguments used inside chartSeries calls.

Usage

setTA(type = c("chartSeries", "barChart", "candleChart"))

listTA(dev)

Arguments

type the function to apply defaults TAs to

dev the device to display TA arguments for

Details

setTA and unsetTA provide a simple way to reuse the same TA arguments for multiple charts.
By default all charting functions will be set to use the current chart’s defaults.

It is important to note that the current device will be used to extract the list of TA arguments to
apply. This is done with a call to listTA internally, and followed by calls to setDefaults of the
appropriate functions.

An additional way to set default TA arguments for subsequent charts is via setDefaults. See
the examples.

Value

Called for its side-effect of setting the default TA arguments to quantmod’s charting functions.

Note

Using setDefaults directly will require the vector of default TA calls to be wrapped in a call
to substitute to prevent unintended evaluations; OR a call to listTA to get the present TA
arguments. This last approach is what setTA wraps.

68 specifyModel

Author(s)

Jeffrey A. Ryan

See Also

chartSeries, addTA

Examples

Not run:
listTA()
setTA()

a longer way to accomplish the same
setDefaults(chartSeries,TA=listTA())
setDefaults(barCart,TA=listTA())
setDefaults(candleChart,TA=listTA())

setDefaults(chartSeries,TA=substitute(c(addVo(),addBBands())))
End(Not run)

specifyModel Specify Model Formula For quantmod Process

Description

Create a single reusable model specification for subsequent buildModel calls. An object of class
quantmod is created that can be then be reused with different modelling methods and parameters.
No data frame is specified, as data is retrieved from potentially multiple environments, and internal
calls to getSymbols.

Usage

specifyModel(formula, na.rm=TRUE)

Arguments

formula an object of class formula (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. The details of model specifcation are
given under Details.

na.rm remove all incomplete rows.

Details

Models are specified through the standard formula mechanism.

As financial models may include a variety of financial and economic indicators, each differing in
source, frequency, and/or class, a single mechanism to specify sources is included within a call to
specifyModel. See getModelData for details of how this process works.

Currently, objects of class quantmod.OHLC, zoo, ts and its are supported within the model
formula.

tradeModel 69

All symbols are first retrieved from the global environment, without inheritence. If an object is not
found in the global environment, it is added to a list of objects to load through the getSymbols
function. getSymbols retrieves each object specified by using information as to its location specified
apriori via setDefaults or setSymbolLookup.

Internally all data is coerced to zoo,data.frame, or numeric classes.

Value

Returns an object of class quantmod. Use modelData to extract full data set as zoo object.

Note

It is possible to include any supported series in the formula by simply specifying the object’s sym-
bol. See *Details* for a list of currently supported classes.

Use getSymbols.skeleton to create additional methods of data sourcing, e.g. from a propri-
etary data format or currently unimplemented source (Bloomberg, Oracle).

See getSymbols.MySQL and getSymbols.yahoo for examples of adding additional func-
tionality

Author(s)

Jeffrey Ryan

References

quantmod.com http://www.quantmod.com

See Also

getModelData,getSymbols, buildModel,tradeModel,formula setSymbolLookup

Examples

Not run:
if QQQQ is not in the Global environment, an attempt will be made
to retrieve it from the source specified with getSymbols.Default

specifyModel(Next(OpCl(QQQQ)) ~ Lag(OpHi(QQQQ),0:3) + Hi(DIA))
End(Not run)

tradeModel Simulate Trading of Fitted quantmod Object

Description

Simulated trading of fitted quantmod object. Given a fitted model, tradeModel calculates the sig-
nal generated over a given historical period, then applies specified trade.rule to calculate and
return a tradeLog object. Additional methods can then be called to evaluate the performance of
the model’s strategy.

http://www.quantmod.com

70 tradeModel

Usage

tradeModel(x,
signal.threshold = c(0, 0),
leverage = 1,
return.model = TRUE,
plot.model = FALSE,
trade.dates = NULL,
exclude.training = TRUE,
ret.type = c("weeks", "months", "quarters", "years"),
...)

Arguments

x a quantmod object from buildModel

signal.threshold
a numeric vector describing simple lower and upper thresholds before trade oc-
curs

leverage amount of leverage to apply - currently a constant

return.model should the full model be returned?

plot.model plot the model?

trade.dates specific trade interval - defaults to full dataset
exclude.training

exclude the period trained on?

ret.type a table of period returns

... additional parameters needed by the underlying modelling function, if any

Details

Still highly experimental and changing. The purpose is to apply a newly contructed model from
buildModel to a new dataset to investigate the model’s trading potential.

At present all parameters are very basic. The near term changes include allowing for a trade.rule
argument to allow for a dynamic trade rule given a set of signals. Additional the application of
variable leverage and costs will become part of the final structure.

Any suggestions as to inclusions or alterations are appreciated and should be directed to the main-
tainer of the package.

Value

A quantmodResults object

Author(s)

Jeffrey A. Ryan

See Also

specifyModel buildModel

zoomChart 71

Examples

Not run:
m <- specifyModel(Next(OpCl(QQQQ)) ~ Lag(OpHi(QQQQ)))
m.built <- buildModel(m,method='rpart',training.per=c('2007-01-01','2007-04-01'))

tradeModel(m.built)
tradeModel(m.built,leverage=2)
End(Not run)

zoomChart Change Zoom Level Of Current Chart

Description

Using xts style date subsetting, zoom into or out of the current chart.

Usage

zooom(n=1, eps=2)
zoomChart(subset)

Arguments

n the number of interactive view changes per call
eps the distance between clicks to be considered a valid subset request
subset a valid subset string

Details

These function allow for viewing of specific areas of a chart produced by chartSeries by simply
specifying the dates of interest

zooom is an interactive chart version of zoomChart which utilizes the standard R device inter-
action tool locator to estimate the subset desired. This estimate is then passed to zoomChart for
actual redrawing. At present it is quite experimental in its interface and arguments. Its usage entails
a call to zooom() followed by the selection of the leftmost and rightmost points desired in the
newly zoomed chart. This selection is accomplished by the user left-clicking each extreme point.
Two click are required to determine the level of zooming. Double clicking will reset the chart
to the full data range. The arguments and internal working of this function are likely to change
dramatically in future releases, though its use will likely remain.

Standard format for the subset argument is the same as the subsetting for xts objects, which is
how the data is stored internally for rendering.

Calling zoomChart with no arguments (NULL) resets the chart to the original data.

Examples include ’2007’ for all of the year 2007, ’2007::2008’ for years 2007 through 2008,
’::2007’ for all data from the beginning of the set to the end of 2007, ’2007::’ all data from the
beginning of 2007 through the end of the data. For specifics regarding the level of detail and inter-
nal interpretation please see [.xts

Value

This function is called for its side effect - notably changing the perspective of the current chart, and
changing its formal subset level. The underlying data attached to the chart is left unchanged.

72 zoomChart

Author(s)

Jeffrey A. Ryan

See Also

chartSeries

Examples

Not run:
data(sample_matrix)
chartSeries(sample_matrix)
zoomChart('2007-04::')
zoomChart()

zooom() # interactive example
End(Not run)

Index

∗Topic IO
getQuote, 36

∗Topic aplot
newTA, 56
TA, 7

∗Topic classes
chob-class, 26
chobTA-class, 27
quantmod-class, 61

∗Topic datagen
buildData, 19
Lag, 2
Next, 4

∗Topic datasets
getModelData, 35
getSymbols.oanda, 48

∗Topic data
getQuote, 36
getSymbols, 40
getSymbols.csv, 44
getSymbols.FRED, 37
getSymbols.google, 46
getSymbols.MySQL, 38
getSymbols.rda, 49
getSymbols.yahoo, 50
modelData, 54
quantmod.OHLC, 63

∗Topic dplot
newTA, 56

∗Topic hplot
newTA, 56

∗Topic misc
Lag, 2
Next, 4

∗Topic models
buildModel, 20
fittedModel, 28
specifyModel, 67
tradeModel, 68

∗Topic package
quantmod-package, 62

∗Topic ts
Lag, 2

∗Topic utilities
addADX, 9
addBBands, 10
addExpiry, 11
addMA, 11
addMACD, 13
addROC, 14
addRSI, 15
addSAR, 16
addSMI, 17
addVo, 18
addWPR, 18
chartSeries, 21
chartTheme, 24
Delt, 1
getDividends, 30
getFinancials, 32
getFX, 31
getMetals, 34
getSymbols.SQLite, 43
has.OHLC, 52
internal-quantmod, 53
is.quantmod, 54
modelData, 54
modelSignal, 55
OHLC.Transformations, 5
options.expiry, 58
periodReturn, 60
setSymbolLookup, 64
setTA, 66
zoomChart, 70

Ad (OHLC.Transformations), 5
addADX, 9
addATR (TA), 7
addBBands, 10
addCCI (TA), 7
addCMF (TA), 7
addCMO (TA), 7
addDEMA (addMA), 11
addDPO (TA), 7
addEMA (addMA), 11
addEnvelope (TA), 7
addEVWMA (addMA), 11

73

74 INDEX

addExpiry, 11, 59
addLines (TA), 7
addMA, 11
addMACD, 13
addMomentum (TA), 7
addPoints (TA), 7
addROC, 14
addRSI, 15
addSAR, 16
addShading (internal-quantmod), 53
addSMA (addMA), 11
addSMI, 17
addTA, 9–19, 24, 27, 67
addTA (newTA), 56
addTRIX (TA), 7
addVo, 18
addWMA (addMA), 11
addWPR, 18
addZLEMA (addMA), 11
allReturns (periodReturn), 60
annualReturn (periodReturn), 60
anova.quantmod (fittedModel), 28
as.quantmod.OHLC (quantmod.OHLC),

63

barChart (chartSeries), 21
buildData, 19
buildModel, 20, 29, 36, 68, 69

candleChart (chartSeries), 21
chartSeries, 21, 25, 27, 58, 67, 71
chartShading (internal-quantmod),

53
chartTheme, 24, 24
chob, 27, 58
chob-class, 26
chobTA, 27, 58
chobTA-class, 27
Cl (OHLC.Transformations), 5
ClCl (OHLC.Transformations), 5
coef.quantmod (fittedModel), 28
coefficients.quantmod

(fittedModel), 28

dailyReturn (periodReturn), 60
Delt, 1
dropTA (TA), 7

fitted.quantmod (fittedModel), 28
fitted.values.quantmod

(fittedModel), 28
fittedModel, 28
fittedModel<- (fittedModel), 28

formula, 68
formula.quantmod (fittedModel), 28
futures.expiry (options.expiry),

58

getDividends, 30
getFin (getFinancials), 32
getFinancials, 32
getFX, 31, 42
getMetals, 34, 42
getModelData, 35, 42, 55, 68
getQuote, 36
getSymbolLookup

(setSymbolLookup), 64
getSymbols, 20, 24, 31, 32, 35–38, 40, 40,

44, 45, 47, 49–51, 61, 64, 65, 68
getSymbols.csv, 42, 44
getSymbols.FRED, 37, 42, 49
getSymbols.google, 42, 46
getSymbols.MySQL, 38
getSymbols.mysql

(getSymbols.MySQL), 38
getSymbols.oanda, 32, 35, 42, 48
getSymbols.rda, 49
getSymbols.RData, 42
getSymbols.RData

(getSymbols.rda), 49
getSymbols.SQLite, 43
getSymbols.yahoo, 42, 50

has.Ad (has.OHLC), 52
has.Cl (has.OHLC), 52
has.Hi (has.OHLC), 52
has.HLC (has.OHLC), 52
has.Lo (has.OHLC), 52
has.OHLC, 52
has.Op (has.OHLC), 52
has.Vo (has.OHLC), 52
Hi (OHLC.Transformations), 5
HiCl (OHLC.Transformations), 5
HLC (OHLC.Transformations), 5

internal-quantmod, 53
is.HLC (has.OHLC), 52
is.OHLC (has.OHLC), 52
is.quantmod, 54
is.quantmodResults (is.quantmod),

54

Lag, 2, 5
lag, 3
Lag.quantmod.OHLC (Lag), 2
Lag.zoo (Lag), 2

INDEX 75

lineChart (chartSeries), 21
listTA (setTA), 66
Lo (OHLC.Transformations), 5
load, 50
loadSymbolLookup

(setSymbolLookup), 64
LoCl (OHLC.Transformations), 5
logLik.quantmod (fittedModel), 28
LoHi (OHLC.Transformations), 5

matchChart (chartSeries), 21
modelData, 20, 36, 54
modelSignal, 55
monthlyReturn (periodReturn), 60
moveTA (TA), 7

newTA, 56
Next, 4
Next.quantmod.OHLC (Next), 4
Next.zoo (Next), 4

oanda.currencies
(getSymbols.oanda), 48

OHLC (OHLC.Transformations), 5
OHLC.Transformations, 5, 53, 64
Op (OHLC.Transformations), 5
OpCl, 2
OpCl (OHLC.Transformations), 5
OpHi (OHLC.Transformations), 5
OpLo (OHLC.Transformations), 5
OpOp, 2
OpOp (OHLC.Transformations), 5
options, 65
options.expiry, 58

periodReturn, 60
plot.quantmod (fittedModel), 28

quantmod, 29
quantmod (quantmod-package), 62
quantmod-class, 61
quantmod-package, 62
quantmod-show (quantmod-class), 61
quantmod.OHLC, 53, 63
quarterlyReturn (periodReturn), 60

read.csv, 45
reChart (chartSeries), 21
removeSymbols (getSymbols), 40
resid.quantmod (fittedModel), 28
residuals.quantmod (fittedModel),

28

saveSymbolLookup
(setSymbolLookup), 64

saveSymbols (getSymbols), 40
seriesHi (OHLC.Transformations), 5
seriesLo (OHLC.Transformations), 5
setSymbolLookup, 38, 40, 42, 45, 47, 50,

51, 64, 68
setTA, 24, 66
show,chobTA-method

(chobTA-class), 27
showSymbols (getSymbols), 40
specifyModel, 5, 7, 20, 21, 36, 40, 42, 54,

55, 67, 69
standardQuote (getQuote), 36
swapTA (TA), 7

TA, 7, 58
to.period, 61
tradeModel, 21, 54, 56, 68, 68

unsetSymbolLookup
(setSymbolLookup), 64

unsetTA (setTA), 66

vcov.quantmod (fittedModel), 28
viewFin (getFinancials), 32
viewFinancials (getFinancials), 32
Vo (OHLC.Transformations), 5

weeklyReturn (periodReturn), 60

yahooQF (getQuote), 36
yearlyReturn (periodReturn), 60

zoom (zoomChart), 70
zoomChart, 70
zooom (zoomChart), 70

	Delt
	Lag
	Next
	OHLC.Transformations
	TA
	addADX
	addBBands
	addExpiry
	addMA
	addMACD
	addROC
	addRSI
	addSAR
	addSMI
	addVo
	addWPR
	buildData
	buildModel
	chartSeries
	chartTheme
	chob-class
	chobTA-class
	fittedModel
	getDividends
	getFX
	getFinancials
	getMetals
	getModelData
	getQuote
	getSymbols.FRED
	getSymbols.MySQL
	getSymbols
	getSymbols.SQLite
	getSymbols.csv
	getSymbols.google
	getSymbols.oanda
	getSymbols.rda
	getSymbols.yahoo
	has.OHLC
	internal-quantmod
	is.quantmod
	modelData
	modelSignal
	newTA
	options.expiry
	periodReturn
	quantmod-class
	quantmod-package
	quantmod.OHLC
	setSymbolLookup
	setTA
	specifyModel
	tradeModel
	zoomChart
	Index

